Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

It seems plausible that higher rent for retail space could be justified only by a higher level of sales. A random sample of \(n=53\) specialty stores in a chain was selected, and the values of \(x=\) annual dollar rent per square foot and \(y=\) annual dollar sales per square foot were determined, resulting in \(r=.37\) ("Association of Shopping Center Anchors with Performance of a Nonanchor Specialty Chain Store," Journal of Retailing [1985]: \(61-74\) ). Carry out a test at significance level \(.05\) to see whether there is in fact a positive linear association between \(x\) and \(y\) in the population of all such stores.

Short Answer

Expert verified
To provide a definite answer, actual calculations will be needed in Step 2 and Step 3. If the calculated test statistic falls into the critical region, the conclusion is that there is a significant positive linear association between rent and sales per square foot. If not, then there is not a significant correlation.

Step by step solution

01

State the Null Hypothesis and Alternative Hypothesis

The null hypothesis (\(H_0\)) is that there is no linear association in the population, so the population correlation coefficient (\(\rho\)) is 0. The alternative hypothesis (\(H_a\)) is that there is a positive linear association in the population, so \(\rho > 0\). Therefore, \(H_0: \rho = 0\) and \(H_a: \rho > 0\).
02

Calculate the Test Statistic

The test statistic (t) for the correlation coefficient is given by the formula \(t = r\sqrt{(n-2)/(1-r^2)}\), where \(r\) is the sample correlation coefficient and \(n\) is the sample size. Plugging in the given values, \(t = 0.37\sqrt{(53-2)/(1-.37^2)}\). Calculate this value to obtain the test statistic.
03

Determine the Critical Region

The critical region for a one-tailed test at a significance level of \(.05\) with \(df = n - 2 = 51\) degrees of freedom is the set of t values greater than the critical t value. Using a t-distribution table or calculator, find the critical t value corresponding to \(.05\) level of significance and \(51\) degrees of freedom. Any test statistic greater than this critical value will fall into the critical (rejection) region.
04

Make a Decision

If the calculated test statistic from Step 2 falls into the critical region determined in Step 3, reject the null hypothesis. This would suggest that there is a significant positive linear association between rent and sales per square foot. If the calculated test statistic does not fall into the critical region, do not reject the null hypothesis. This would suggest that there is not a significant correlation between the two variables.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The effects of grazing animals on grasslands have been the focus of numerous investigations by ecologists. One such study, reported in "The Ecology of Plants, Large Mammalian Herbivores, and Drought in Yellowstone National Park" (Ecology [1992]: 2043-2058), proposed using the simple linear regression model to relate \(y=\) green biomass concentration \(\left(\mathrm{g} / \mathrm{cm}^{3}\right)\) to \(x=\) elapsed time since snowmelt (days). a. The estimated regression equation was given as \(\hat{y}=\) \(106.3-.640 x\). What is the estimate of average change in biomass concentration associated with a 1 -day increase in elapsed time? b. What value of biomass concentration would you predict when elapsed time is 40 days? c. The sample size was \(n=58\), and the reported value of the coefficient of determination was .470. Does this suggest that there is a useful linear relationship between the two variables? Carry out an appropriate test.

A random sample of \(n=347\) students was selected, and each one was asked to complete several questionnaires, from which a Coping Humor Scale value \(x\) and a Depression Scale value \(y\) were determined ("Depression and Sense of Humor" (Psychological Reports [1994]: \(1473-1474\) ). The resulting value of the sample correlation coefficient was \(-.18\). a. The investigators reported that \(P\) -value \(<.05\). Do you agree? b. Is the sign of \(r\) consistent with your intuition? Explain. (Higher scale values correspond to more developed sense of humor and greater extent of depression.) c. Would the simple linear regression model give accurate predictions? Why or why not?

A study was carried out to relate sales revenue \(y\) (in thousands of dollars) to advertising expenditure \(x\) (also in thousands of dollars) for fast-food outlets during a 3-month period. A sample of 15 outlets yielded the accompanying summary quantities. $$ \begin{aligned} &\sum x=14.10 \quad \sum y=1438.50 \quad \sum x^{2}=13.92 \\ &\sum y^{2}=140,354 \quad \sum x y=1387.20 \\ &\sum(y-\bar{y})^{2}=2401.85 \quad \sum(y-\hat{y})^{2}=561,46 \end{aligned} $$ a. What proportion of observed variation in sales revenue can be attributed to the linear relationship between revenue and advertising expenditure? b. Calculate \(s\), and \(s_{b}\). c. Obtain a \(90 \%\) confidence interval for \(\beta\), the average change in revenue associated with a \(\$ 1000\) (that is, 1 -unit) increase in advertising expenditure.

If the sample correlation coefficient is equal to 1 , is it necessarily true that \(\rho=1 ?\) If \(\rho=1\), is it necessarily true that \(r=1 ?\)

The accompanying summary quantities resulted from a study in which \(x\) was the number of photocopy machines serviced during a routine service call and \(y\) was the total service time (min): \(n=16 \quad \sum(y-\bar{y})^{2}=22,398.05 \quad \sum(y-\hat{y})^{2}=2620.57\) a. What proportion of observed variation in total service time can be explained by a linear probabilistic relationship between total service time and the number of machines serviced? b. Calculate the value of the estimated standard deviation \(s_{e .}\) What is the number of degrees of freedom associated with this estimate?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free