Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A study was carried out to relate sales revenue \(y\) (in thousands of dollars) to advertising expenditure \(x\) (also in thousands of dollars) for fast-food outlets during a 3-month period. A sample of 15 outlets yielded the accompanying summary quantities. $$ \begin{aligned} &\sum x=14.10 \quad \sum y=1438.50 \quad \sum x^{2}=13.92 \\ &\sum y^{2}=140,354 \quad \sum x y=1387.20 \\ &\sum(y-\bar{y})^{2}=2401.85 \quad \sum(y-\hat{y})^{2}=561,46 \end{aligned} $$ a. What proportion of observed variation in sales revenue can be attributed to the linear relationship between revenue and advertising expenditure? b. Calculate \(s\), and \(s_{b}\). c. Obtain a \(90 \%\) confidence interval for \(\beta\), the average change in revenue associated with a \(\$ 1000\) (that is, 1 -unit) increase in advertising expenditure.

Short Answer

Expert verified
a) R-square value represents the proportion of variation. b) \(s\) and \(s_{b}\) are the estimated standard deviation of residuals and standard error of the regression slope respectively. c) The 90% confidence interval for beta gives us the range of plausible values for the average change in revenue for a $1000 increase in expenditure.

Step by step solution

01

Calculate Beta

First, we need to calculate beta, the slope of the regression line, using the formula \(\beta = \frac{\sum xy - n \bar{x}\bar{y}}{\sum x^2 - n \bar{x}^2} = \frac{1387.2 - (1/15)*(14.1)*(1438.5)}{13.92 - (1/15)*(14.1)^2}\)
02

Calculate R-Square

The proportion of observed variation explained by the model is represented by R-square. It can be computed using the formula \(R^2 = 1 - \frac{\sum (y - \hat{y})^2}{\sum (y - \bar{y})^2}\) Plug in the given values from the problem into this formula.
03

Calculate S

To calculate the standard deviation of residuals, or S, use the following formula: \(s = \sqrt{\frac{\sum(y-\hat{y})^2}{n-2}} = \sqrt{\frac{561.46}{15-2}}\).
04

Calculate Sb

Next, use the calculated s from step 3 and the given \(\bar{x}\) to compute sb, the standard error of the slope coefficient, using the formula \(s_{b} = \frac{s}{\sqrt{\sum (x - \bar{x})^2}}\).
05

Confidence Interval for Beta

The formula to find a 90% confidence interval for beta is \(\beta \pm t_{n-2,1-\alpha/2} * s_{b}\) where \(t_{n-2,1-\alpha/2}\) is the \(1-\alpha/2\) quantile from a t-distribution with \(n-2\) degrees of freedom. Take \(\alpha = 0.1\) for 90% confidence interval and use a t-table to find the quantile.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The flow rate in a device used for air quality measurement depends on the pressure drop \(x\) (inches of water) across the device's filter. Suppose that for \(x\) values between 5 and 20 , these two variables are related according to the simple linear regression model with true regression line \(y=-0.12+0.095 x\). a. What is the true average flow rate for a pressure drop of 10 in.? A drop of 15 in.? b. What is the true average change in flow rate associated with a 1 -in. increase in pressure drop? Explain. c. What is the average change in flow rate when pressure drop decreases by 5 in.?

Some straightforward but slightly tedious algebra shows that $$ \text { SSResid }=\left(1-r^{2}\right) \sum(y-\bar{y})^{2} $$ from which it follows that $$ s_{e}=\sqrt{\frac{n-1}{n-2}}\left(\sqrt{1-r^{2}}\right) s_{y} $$ Unless \(n\) is quite small, \((n-1) /(n-2) \approx 1\), so $$ s_{e} \approx\left(\sqrt{1-r^{2}}\right) s_{y} $$ a. For what value of \(r\) is \(s_{e}\) as large as \(s_{y}\) ? What is the equation of the least-squares line in this case? b. For what values of \(r\) will \(s_{e}\) be much smaller than \(s_{y} ?\)

The article "Technology, Productivity, and Industry Structure" (Technological Forecasting and Social Change [1983]: \(1-13\) ) included the accompanying data on \(x=\) research and development expenditure and \(y=\) growth rate for eight different industries. $$ \begin{array}{rrrrrrrrr} x & 2024 & 5038 & 905 & 3572 & 1157 & 327 & 378 & 191 \\ y & 1.90 & 3.96 & 2.44 & 0.88 & 0.37 & -0.90 & 0.49 & 1.01 \end{array} $$ a. Would a simple linear regression model provide useful information for predicting growth rate from research and development expenditure? Use a .05 level of significance. b. Use a \(90 \%\) confidence interval to estimate the average change in growth rate associated with a 1 -unit increase in expenditure. Interpret the resulting interval.

If the sample correlation coefficient is equal to 1 , is it necessarily true that \(\rho=1 ?\) If \(\rho=1\), is it necessarily true that \(r=1 ?\)

Suppose that a simple linear regression model is appropriate for describing the relationship between \(y=\) house price and \(x=\) house size (sq ft) for houses in a large city. The true regression line is \(y=23,000+47 x\) and \(\sigma=5000\). a. What is the average change in price associated with one extra sq \(\mathrm{ft}\) of space? With an additional 100 sq \(\mathrm{ft}\) of space? b. What proportion of \(1800-\) sq-ft homes would be priced over \(\$ 110,000 ?\) Under \(\$ 100,000\) ?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free