Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Dentists make many people nervous (even more so than statisticians!). To see whether such nervousness elevates blood pressure, the blood pressure and pulse rates of 60 subjects were measured in a dental setting and in a medical setting ("The Effect of the Dental Setting on Blood Pressure Measurement," American Journal of \(P u b-\) lic Health \([1983]: 1210-1214)\). For each subject, the difference (dental-setting blood pressure minus medicalsetting blood pressure) was calculated. The analogous differences were also calculated for pulse rates. Summary data follows.

Short Answer

Expert verified
The conclusion whether there is a significant difference in blood pressure or pulse rates between dental and medical settings can be drawn after statistical analysis and depends on the results of the t-test. The t-test results on the obtained sample data will provide a p-value, based on which the null hypothesis can be either accepted or declined.

Step by step solution

01

Understand the data

Here, we have data for 60 subjects for their blood pressure and pulse rate recorded in two different settings, Dental and Medical. We are given the difference values, i.e., dental-setting blood pressure minus medical-setting blood pressure, and likewise for pulse rates. To analyze this data, we will have to calculate the mean difference and standard deviation of difference, and use these values to perform the appropriate statistical test.
02

Calculating mean and standard deviation

First thing we need to do is calculate the mean difference and standard deviation of the difference. The mean difference is the total of all the differences divided by the count of values (60 in this case). The standard deviation, on the other hand, is a measure of how much these values vary from the mean value. We can calculate standard deviation using the formula \(\sqrt{\frac{\Sigma (x_i - \bar{x})^2}{N-1}}\) where \(x_i\) is each difference value and \(\bar{x}\) is the mean difference.
03

Hypothesis testing

Once we have the mean difference and standard deviation, we can perform a paired t-test to investigate whether there is a significant difference in blood pressure and pulse rates in Dental setting versus Medical setting. The null hypothesis assumes that there is no difference (mean difference is zero), and the alternative hypothesis assumes that there is a difference (mean difference is not zero).
04

Interpretation

After performing the statistical test, the results have to be interpreted correctly. If the p-value is less than the threshold (usually 0.05), then the null hypothesis is rejected, concluding that there is a significant difference in blood pressure or pulse rates between dental and medical settings. Alternatively, if the p-value is more than the threshold, then the null hypothesis is upheld, indicating that there is no difference between these two setting.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two different underground pipe coatings for preventing corrosion are to be compared. The effect of a coating (as measured by maximum depth of corrosion penetration on a piece of pipe) may vary with depth, orientation, soil type, pipe composition, etc. Describe how an experiment that filters out the effects of these extraneous factors could be carried out.

The article "Portable MP3 Player Ownership Reaches New High" (Ipsos Insight, June 29,2006 ) reported that in \(2006,20 \%\) of those in a random sample of 1112 Americans age 12 and older indicated that they owned an MP3 player. In a similar survey conducted in 2005 , only \(15 \%\) reported owning an MP3 player. Suppose that the 2005 figure was also based on a random sample of size 1112 . Estimate the difference in the proportion of Americans age 12 and older who owned an MP3 player in 2006 and the corresponding proportion for 2005 using a 95\% confidence interval. Is zero included in the interval? What does this tell you about the change in this proportion from 2005 to \(2006 ?\)

The article "Religion and Well-Being Among Canadian University Students: The Role of Faith Groups on Campus" (Journal for the Scientific Study of Religion \([1994]: 62-73\) ) compared the self-esteem of students who belonged to Christian clubs and students who did not belong to such groups. Each student in a random sample of \(n=169\) members of Christian groups (the affiliated group) completed a questionnaire designed to measure self-esteem. The same questionnaire was also completed by each student in a random sample of \(n=124\) students who did not belong to a religious club (the unaffiliated group). The mean self-esteem score for the affiliated group was \(25.08\), and the mean for the unaffiliated group was \(24.55 .\) The sample standard deviations weren't given in the article, but suppose that they were 10 for the affiliated group and 8 for the unaffiliated group. Is there evidence that the true mean self- esteem score differs for affiliated and unaffiliated students? Test the relevant hypotheses using a significance level of \(.01\).

Here's one to sink your teeth into: The authors of the article "Analysis of Food Crushing Sounds During Mastication: Total Sound Level Studies" (Journal of Texture Studies \([1990]: 165-178\) ) studied the nature of sound: generated during eating. Peak loudness (in decibels at \(20 \mathrm{~cm}\) away) was measured for both open-mouth and closed-mouth chewing of potato chips and of tortilla chips Forty subjects participated, with ten assigned at random te each combination of conditions (such as closed-mouth, potato chip, and so on). We are not making this up! Summary values taken from plots given in the article appear in the accompanying table. \begin{tabular}{lccc} & \(n\) & \(\bar{x}\) & \(s\) \\ \hline Potato Chip & & & \\ Open mouth & 10 & 63 & 13 \\ Closed mouth & 10 & 54 & 16 \\ Tortilla Chip & & & \\ Open mouth & 10 & 60 & 15 \\ Closed mouth & 10 & 53 & 16 \\ & & & \\ \hline \end{tabular} a. Construct a \(95 \%\) confidence interval for the difference in mean peak loudness between open-mouth and closed-

An Associated Press article (San Luis Obispo Telegram-Tribune, September 23,1995 ) examined the changing attitudes of Catholic priests. National surveys of priests aged 26 to 35 were conducted in 1985 and again in 1993\. The priests surveyed were asked whether they agreed with the following statement: Celibacy should be a matter of personal choice for priests. In \(1985,69 \%\) of those surveyed agreed; in \(1993,38 \%\) agreed. Suppose that the samples were randomly selected and that the sample sizes were both 200 . Is there evidence that the proportion of priests who agreed that celibacy should be a matter of personal choice declined from 1985 to 1993 ? Use \(\alpha=.05\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free