Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Gender differences in student needs and fears were examined in the article "A Survey of Counseling Needs of Male and Female College Students" (Journal of College Student Development \([1998]: 205-208\) ). Random samples of male and female students were selected from those attending a particular university. Of 234 males surveyed, \(27.5 \%\) said that they were concerned about the possibility of getting AIDS. Of 568 female students surveyed, \(42.7 \%\) reported being concerned about the possibility of getting AIDS. Is there sufficient evidence to conclude that the proportion of female students concerned about the possibility of getting AIDS is greater than the corresponding proportion for males?

Short Answer

Expert verified
The conclusion whether there is sufficient evidence to conclude that the proportion of female students concerned about the possibility of getting AIDS is greater than the corresponding proportion for males can be made based on the p-value and the significance level. If the p-value is less than the significance level, then there is sufficient evidence to reject the null hypothesis and conclude that the proportion of female students concerned about the possibility of getting AIDS is greater than that of males.

Step by step solution

01

Set Up Hypotheses

The null hypothesis \(H_0\) is that the proportions are equal, i.e. \(P_F = P_M\). The alternative hypothesis \(H_A\) is that the proportion of concern among female students is greater than among male students, i.e. \(P_F > P_M\).
02

Calculate Test Statistic

Calculate the test statistic using the formula for comparing two population proportions: \(Z = \frac{(\hat{P}_F - \hat{P}_M) - 0}{\sqrt{\hat{P}(1-\hat{P})\left(\frac{1}{n_F} + \frac{1}{n_M}\right)}}\) where \(\hat{P}_F = 42.7\%, \hat{P}_M = 27.5\%, n_F = 568, n_M = 234\), and \(\hat{P}\) is the overall sample proportion, \(\hat{P} = \frac{n_F\hat{P}_F + n_M\hat{P}_M}{n_F + n_M}\). Substitute these values to calculate the Z score.
03

Find P-Value

Find the p-value associated with the test statistic. The p-value is the probability of observing a test statistic as extreme as the one calculated, assuming the null hypothesis is true. Use a standard normal table or calculator to find the p-value.
04

Make Decision

Compare the p-value with the significance level. If the p-value is less than the significance level, reject the null hypothesis. If the p-value is greater than or equal to the significance level, fail to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each person in a random sample of 228 male teenagers and a random sample of 306 female teenagers was asked how many hours he or she spent online in a typical week (Ipsos, January 25,2006 ). The sample mean and standard deviation were \(15.1\) hours and \(11.4\) hours for males and \(14.1\) and \(11.8\) for females. a. The standard deviation for each of the samples is large, indicating a lot of variability in the responses to the question. Explain why it is not reasonable to think that the distribution of responses would be approximately normal for either the population of male teenagers or the population of female teenagers. Hint: The number of hours spent online in a typical week cannot be negative. b. Given your response to Part (a), would it be appropriate to use the two- sample \(t\) test to test the null hypothesis that there is no difference in the mean number of hours spent online in a typical week for male teenagers and female teenagers? Explain why or why not. c. If appropriate, carry out a test to determine if there is convincing evidence that the mean number of hours spent online in a typical week is greater for male teenagers than for female teenagers. Use a \(.05\) significance level.

Are college students who take a freshman orientation course more or less likely to stay in college than those who do not take such a course? The article "A Longitudinal Study of the Retention and Academic Performance of Participants in Freshmen Orientation Courses" (Journal of College Student Development \([1994]: 444-\) 449) reported that 50 of 94 randomly selected students who did not participate in an orientation course returned for a second year. Of 94 randomly selected students who did take the orientation course, 56 returned for a second year. Construct a \(95 \%\) confidence interval for \(\pi_{1}-\pi_{2}\), the difference in the proportion returning for students who do not take an orientation course and those who do. Give an interpretation of this interval.

A university is interested in evaluating registration processes. Students can register for classes by using either a telephone registration system or an online system that is accessed through the university's web site. Independent random samples of 80 students who registered by phone and 60 students who registered online were selected. Of those who registered by phone, 57 reported that they were satisfied with the registration process. Of those who registered online, 50 reported that they were satisfied. Based on these data, is it reasonable to conclude that the proportion who are satisfied is higher for those who register online? Test the appropriate hypotheses using \(\alpha=.05\).

Consider two populations for which \(\mu_{1}=30, \sigma_{1}=2\), \(\mu_{2}=25\), and \(\sigma_{2}=3\). Suppose that two independent random samples of sizes \(n_{1}=40\) and \(n_{2}=50\) are selected. Describe the approximate sampling distribution of \(\bar{x}_{1}-\bar{x}_{2}\) (center, spread, and shape).

Samples of both surface soil and subsoil were taken from eight randomly selected agricultural locations in a particular county. The soil samples were analyzed to determine both surface \(\mathrm{pH}\) and subsoil \(\mathrm{pH}\), with the results shown in the accompanying table. \begin{tabular}{lcccccccc} Location & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline Surface pH & \(6.55\) & \(5.98\) & \(5.59\) & \(6.17\) & \(5.92\) & \(6.18\) & \(6.43\) & \(5.68\) \\ Subsoil pH & \(6.78\) & \(6.14\) & \(5.80\) & \(5.91\) & \(6.10\) & \(6.01\) & \(6.18\) & \(5.88\) \\ \hline \end{tabular} a. Compute a \(90 \%\) confidence interval for the true average difference between surface and subsoil \(\mathrm{pH}\) for agricultural land in this county. b. What assumptions are necessary to validate the interval in Part (a)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free