Chapter 11: Problem 65
The article "So Close, Yet So Far: Predictors of Attrition in College Seniors" (Journal of College Student Development \([1999]: 343-354\) ) attempts to describe differences between college seniors who disenroll before graduating and those who do graduate. Researchers randomly selected 42 nonreturning and 48 returning seniors, none of whom were transfer students. These 90 students rated themselves on personal contact and campus involvement. The resulting data are summarized here: \begin{tabular}{lcccc} & \multicolumn{2}{c} { Returning \((n=48)\)} & & Nonrefurning \((n=42)\) \\ \cline { 2 } \cline { 4 - 5 } & & Standard & & Standard \\ & Mean Deviation & & Mean & Deviation \\ \hline Personal & & & & \\ Contact & \(3.22\) & \(.93\) & & \(2.41\) & \(1.03\) \\ Campus & & & & \\ Involvement & \(3.21\) & \(1.01\) & \(3.31\) & \(1.03\) \\ & & & & \end{tabular} a. Construct and interpret a \(95 \%\) confidence interval for the difference in mean campus involvement rating for returning and nonreturning students. Does your interval support the statement that students who do not return are less involved, on average, than those who do? Explain. b. Do students who don't return have a lower mean personal contact rating than those who do return? Test the relevant hypotheses using a significance level of \(.01\).