Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In December 2001, the Department of Veterans Affairs announced that it would begin paying benefits to soldiers suffering from Lou Gehrig's disease who had served in the Gulf War (The New York Times, December 11,2001 ). This decision was based on an analysis in which the Lou Gehrig's disease incidence rate (the proportion developing the disease) for the approximately 700,000 soldiers sent to the Gulf between August 1990 and July 1991 was compared to the incidence rate for the approximately \(1.8\) million other soldiers who were not in the Gulf during this time period. Based on these data, explain why it is not appropriate to perform a formal inference procedure (such as the two-sample \(z\) test) and yet it is still reasonable to conclude that the incidence rate is higher for Gulf War veterans than for those who did not serve in the Gulf War.

Short Answer

Expert verified
Formal inference procedures like the two-sample z test are not appropriate in this case because they are designed to estimate parameters of a population from a sample. Here, we are not dealing with samples but with entire populations of soldiers. Therefore, we are not estimating but comparing known parameters. Further, the incidence rate is a ratio, so a higher rate among Gulf War veterans would directly indicate a higher risk of developing the disease in this group.

Step by step solution

01

Understanding Data

First, let's understand the exercise. It deals with two groups - soldiers who served in the Gulf War (700,000) and other soldiers who did not (1.8 million). The incidence rate of Lou Gehrig's disease was compared between these groups.
02

Why not Formal Inference

The reason it's not appropriate to perform a formal inference here is that formal tests like two-sample z test are designed to infer from a sample to a population. Here, we are not dealing with samples. The incidence rates are for the entire populations of soldiers who were, and were not, in the Gulf War during the specified time period. We are not estimating an unknown parameter based on a sample but rather comparing known parameters derived from entire populations.
03

How to Conclude Higher Incidence Rate

Despite this, we can still conclude that the incidence rate is higher for Gulf War veterans because we are comparing the incidence rates (a ratio of disease frequency to the group size) for the entire groups. If the ratio is higher for the Gulf War veterans, then it is reasonable to conclude that these veterans had a higher risk of developing the disease.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A university is interested in evaluating registration processes. Students can register for classes by using either a telephone registration system or an online system that is accessed through the university's web site. Independent random samples of 80 students who registered by phone and 60 students who registered online were selected. Of those who registered by phone, 57 reported that they were satisfied with the registration process. Of those who registered online, 50 reported that they were satisfied. Based on these data, is it reasonable to conclude that the proportion who are satisfied is higher for those who register online? Test the appropriate hypotheses using \(\alpha=.05\).

"Mountain Biking May Reduce Fertility in Men, Study Says" was the headline of an article appearing in the San Luis Obispo Tribune (December 3,2002 ). This conclusion was based on an Austrian study that compared sperm counts of avid mountain bikers (those who ride at least 12 hours per week) and nonbikers. Ninety percent of the avid mountain bikers studied had low sperm counts, as compared to \(26 \%\) of the nonbikers. Suppose that these percentages were based on independent samples of 100 avid mountain bikers and 100 nonbikers and that it is reasonable to view these samples as representative of Austrian avid mountain bikers and nonbikers. a. Do these data provide convincing evidence that the proportion of Austrian avid mountain bikers with low sperm count is higher than the proportion of Austrian nonbikers? b. Based on the outcome of the test in Part (a), is it reasonable to conclude that mountain biking 12 hours per week or more causes low sperm count? Explain.

Two different underground pipe coatings for preventing corrosion are to be compared. The effect of a coating (as measured by maximum depth of corrosion penetration on a piece of pipe) may vary with depth, orientation, soil type, pipe composition, etc. Describe how an experiment that filters out the effects of these extraneous factors could be carried out.

"Smartest People Often Dumbest About Sunburns" is the headline of an article that appeared in the San Luis Obispo Tribune (July 19,2006 ). The article states that "those with a college degree reported a higher incidence of sunburn that those without a high school degree43 percent versus 25 percent." For purposes of this exercise, suppose that these percentages were based on random samples of size 200 from each of the two groups of interest (college graduates and those without a high school degree). Is there convincing evidence that the proportion experiencing a sunburn is higher for college graduates than it is for those without a high school degree? Answer based on a test with a \(.05\) significance level.

Samples of both surface soil and subsoil were taken from eight randomly selected agricultural locations in a particular county. The soil samples were analyzed to determine both surface \(\mathrm{pH}\) and subsoil \(\mathrm{pH}\), with the results shown in the accompanying table. \begin{tabular}{lcccccccc} Location & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline Surface pH & \(6.55\) & \(5.98\) & \(5.59\) & \(6.17\) & \(5.92\) & \(6.18\) & \(6.43\) & \(5.68\) \\ Subsoil pH & \(6.78\) & \(6.14\) & \(5.80\) & \(5.91\) & \(6.10\) & \(6.01\) & \(6.18\) & \(5.88\) \\ \hline \end{tabular} a. Compute a \(90 \%\) confidence interval for the true average difference between surface and subsoil \(\mathrm{pH}\) for agricultural land in this county. b. What assumptions are necessary to validate the interval in Part (a)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free