Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The paper "Effects of Fast-Food Consumption on Energy Intake and Diet Quality Among Children in a National Household Survey" (Pediatrics [2004]: \(112-118\) ) investigated the effect of fast-food consumption on other dietary variables. For a sample of 663 teens who reported that they did not eat fast food during a typical day, the mean daily calorie intake was 2258 and the sample standard deviation was \(1519 .\) For a sample of 413 teens who reported that they did eat fast food on a typical day, the mean calorie intake was 2637 and the standard deviation was 1138 . a. What assumptions about the two samples must be reasonable in order for the use of the two-sample \(t\) confidence interval to be appropriate? b. Use the given information to estimate the difference in mean daily calorie intake for teens who do eat fast food on a typical day and those who do not.

Short Answer

Expert verified
The assumptions needed for the t test are that the two groups are independent, normally distributed, and have equal variances. The difference in mean daily calorie intake between teens who do eat fast food and those who don't is 379 calories.

Step by step solution

01

Identify the Assumptions for Two-Sample t Test

The assumptions needed for a two-sample t confidence interval to be appropriate include:1. The two populations (teens who eat fast food and those who do not) are independent. Essentially, someone from one population doesn't influence someone from another. 2. Both populations are normally distributed (or approximately so), but this is often relaxed if the sample sizes are relatively large.3. The variances of the two populations are equal. This can often be checked with a test for equality of variances.
02

Calculate the Difference in Mean Daily Calorie Intake

The mean daily calorie intake for teens who eat fast food is 2637 while for those who don't, it's 2258. So, the difference in mean daily calorie intake is \(2637 - 2258 = 379\) calories.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "Workaholism in Organizations: Gender Differences" (Sex Roles [1999]: \(333-346\) ) gave the following data on 1996 income (in Canadian dollars) for random samples of male and female MBA graduates from a particular Canadian business school: \begin{tabular}{lccc} & \(\boldsymbol{n}\) & \(\boldsymbol{x}\) & \(\boldsymbol{s}\) \\ \hline Males & 258 & \(\$ 133,442\) & \(\$ 131,090\) \\ Females & 233 & \(\$ 105,156\) & \(\$ 98,525\) \\ \hline \end{tabular} a. For what significance levels would you conclude that the mean salary of female MBA graduates of this business school is above \(\$ 100,000\) ? b. Is there convincing evidence that the mean salary for female MBA graduates of this business school is lower than the mean salary for the male graduates?

Do teenage boys worry more than teenage girls? This is one of the questions addressed by the authors of the article "The Relationship of Self-Esteem and Attributional Style to Young People's Worries" (Journal of Psychology [1987]: 207-215). A scale called the Worries Scale was administered to a group of teenagers, and the results are summarized in the accompanying table. \begin{tabular}{lccc} & & Sample & Sample \\ Gender & \(n\) & Mean Score & sd \\ \hline Girls & 108 & \(62.05\) & \(9.5\) \\ Boys & 78 & \(67.59\) & \(9.7\) \\ & & & \\ \hline \end{tabular} Is there sufficient evidence to conclude that teenage boys score higher on the Worries Scale than teenage girls? Use a significance level of \(\alpha=.05\).

The coloration of male guppies may affect the mating preference of the female guppy. To test this hypothesis, scientists first identified two types of guppies, Yarra and Paria, that display different colorations ("Evolutionary Mismatch of Mating Preferences and Male Colour Patterns in Guppies," Animal Behaviour \([1997]: 343-51\) ). The relative area of orange was calculated for fish of each type. A random sample of 30 Yarra guppies resulted in a mean relative area of \(.106\) and a standard deviation of .055. A random sample of 30 Paria guppies resulted in a mean relative area of 178 and a standard deviation \(.058\). Is there evidence of a difference in coloration? Test the relevant hypotheses to determine whether the mean area of orange is different for the two types of guppies.

The article "Religion and Well-Being Among Canadian University Students: The Role of Faith Groups on Campus" (Journal for the Scientific Study of Religion \([1994]: 62-73\) ) compared the self-esteem of students who belonged to Christian clubs and students who did not belong to such groups. Each student in a random sample of \(n=169\) members of Christian groups (the affiliated group) completed a questionnaire designed to measure self-esteem. The same questionnaire was also completed by each student in a random sample of \(n=124\) students who did not belong to a religious club (the unaffiliated group). The mean self-esteem score for the affiliated group was \(25.08\), and the mean for the unaffiliated group was \(24.55 .\) The sample standard deviations weren't given in the article, but suppose that they were 10 for the affiliated group and 8 for the unaffiliated group. Is there evidence that the true mean self- esteem score differs for affiliated and unaffiliated students? Test the relevant hypotheses using a significance level of \(.01\).

Dentists make many people nervous (even more so than statisticians!). To see whether such nervousness elevates blood pressure, the blood pressure and pulse rates of 60 subjects were measured in a dental setting and in a medical setting ("The Effect of the Dental Setting on Blood Pressure Measurement," American Journal of \(P u b-\) lic Health \([1983]: 1210-1214)\). For each subject, the difference (dental-setting blood pressure minus medicalsetting blood pressure) was calculated. The analogous differences were also calculated for pulse rates. Summary data follows.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free