Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The authors of the paper "Inadequate Physician Knowledge of the Effects of Diet on Blood Lipids and Lipoproteins" (Nutrition Journal [2003]: 19-26) summarize the responses to a questionnaire on basic knowledge of nutrition that was mailed to 6000 physicians selected at random from a list of physicians licensed in the United States. Sixteen percent of those who received the questionnaire completed and returned it. The authors report that 26 of 120 cardiologists and 222 of 419 internists did not know that carbohydrate was the diet component most likely to raise triglycerides. a. Estimate the difference between the proportion of cardiologists and the proportion of internists who did not know that carbohydrate was the diet component most likely to raise triglycerides using a \(95 \%\) confidence interval. b. What potential source of bias might limit your ability to generalize the estimate from Part (a) to the populations of all cardiologists and all internists?

Short Answer

Expert verified
The estimated difference in the proportions of cardiologists and internists who were unaware of the effects of carbohydrates on triglycerides, can be computed using the formula described in step-3. Potential bias might include non-response bias due to the low response rate and the fact that the set of physicians were not randomly selected from the total population of physicians.

Step by step solution

01

Calculate the proportions

The proportion of cardiologists who didn't know is \(26/120 = 0.2167\) and the proportion of internists who didn't know is \(222/419 = 0.5298\).
02

Calculate the estimate of the standard error

The standard error is calculated as \(\sqrt{[(\hat{p1} (1-\hat{p1}))/n1] + [(\hat{p2} (1-\hat{p2}))/n2]}\), in this case \(\hat{p1}\) and \(\hat{p2}\) are the proportions of cardiologists and internists who didn't know respectively and \(n1\) and \(n2\) are the total number of cardiologists and internists respectively who took the survey.
03

Calculate the 95% confidence interval

The 95% confidence interval is calculated as \(\hat{p1} - \hat{p2} \pm Z * SE\) where \(Z\) is the z-value from the standard normal distribution corresponding to a 95% confidence level which is 1.96. The confidence interval thus obtained will estimate the difference in proportions between the two groups of doctors.
04

Identify potential bias

The potential source of bias could be the fact that the questionnaire was sent to selected physicians, meaning it may not represent all cardiologists and internists. The response rate of only 16% might mean the responses may not be representative of all physicians. Another bias could be because the questionnaire was mailed, which might introduce a non-response bias, if physicians who do not know the effect of diet on blood lipids were more likely to ignore the questionnaire.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The coloration of male guppies may affect the mating preference of the female guppy. To test this hypothesis, scientists first identified two types of guppies, Yarra and Paria, that display different colorations ("Evolutionary Mismatch of Mating Preferences and Male Colour Patterns in Guppies," Animal Behaviour \([1997]: 343-51\) ). The relative area of orange was calculated for fish of each type. A random sample of 30 Yarra guppies resulted in a mean relative area of \(.106\) and a standard deviation of .055. A random sample of 30 Paria guppies resulted in a mean relative area of 178 and a standard deviation \(.058\). Is there evidence of a difference in coloration? Test the relevant hypotheses to determine whether the mean area of orange is different for the two types of guppies.

The article "So Close, Yet So Far: Predictors of Attrition in College Seniors" (Journal of College Student Development \([1999]: 343-354\) ) attempts to describe differences between college seniors who disenroll before graduating and those who do graduate. Researchers randomly selected 42 nonreturning and 48 returning seniors, none of whom were transfer students. These 90 students rated themselves on personal contact and campus involvement. The resulting data are summarized here: \begin{tabular}{lcccc} & \multicolumn{2}{c} { Returning \((n=48)\)} & & Nonrefurning \((n=42)\) \\ \cline { 2 } \cline { 4 - 5 } & & Standard & & Standard \\ & Mean Deviation & & Mean & Deviation \\ \hline Personal & & & & \\ Contact & \(3.22\) & \(.93\) & & \(2.41\) & \(1.03\) \\ Campus & & & & \\ Involvement & \(3.21\) & \(1.01\) & \(3.31\) & \(1.03\) \\ & & & & \end{tabular} a. Construct and interpret a \(95 \%\) confidence interval for the difference in mean campus involvement rating for returning and nonreturning students. Does your interval support the statement that students who do not return are less involved, on average, than those who do? Explain. b. Do students who don't return have a lower mean personal contact rating than those who do return? Test the relevant hypotheses using a significance level of \(.01\).

The positive effect of water fluoridation on dental health is well documented. One study that validates this is described in the article "Impact of Water Fluoridation on Children's Dental Health: A Controlled Study of Two Pennsylvania Communities" (American Statistical Association Proceedings of the Social Statistics Section \([1981]:\) 262-265). Two communities were compared. One had adopted fluoridation in 1966, whereas the other had no such program. Of 143 randomly selected children from the town without fluoridated water, 106 had decayed teeth, and 67 of 119 randomly selected children from the town with fluoridated water had decayed teeth. Let \(\pi_{1}\) denote the true proportion of children drinking fluoridated water who have decayed teeth, and let \(\pi_{2}\) denote the analogous proportion for children drinking unfluoridated water. Estimate \(\pi_{1}-\pi_{2}\) using a \(90 \%\) confidence interval. Does the interval contain \(0 ?\) Interpret the interval.

Here's one to sink your teeth into: The authors of the article "Analysis of Food Crushing Sounds During Mastication: Total Sound Level Studies" (Journal of Texture Studies \([1990]: 165-178\) ) studied the nature of sound: generated during eating. Peak loudness (in decibels at \(20 \mathrm{~cm}\) away) was measured for both open-mouth and closed-mouth chewing of potato chips and of tortilla chips Forty subjects participated, with ten assigned at random te each combination of conditions (such as closed-mouth, potato chip, and so on). We are not making this up! Summary values taken from plots given in the article appear in the accompanying table. \begin{tabular}{lccc} & \(n\) & \(\bar{x}\) & \(s\) \\ \hline Potato Chip & & & \\ Open mouth & 10 & 63 & 13 \\ Closed mouth & 10 & 54 & 16 \\ Tortilla Chip & & & \\ Open mouth & 10 & 60 & 15 \\ Closed mouth & 10 & 53 & 16 \\ & & & \\ \hline \end{tabular} a. Construct a \(95 \%\) confidence interval for the difference in mean peak loudness between open-mouth and closed-

Women diagnosed with breast cancer whose tumors have not spread may be faced with a decision between two surgical treatments - mastectomy (removal of the breast) or lumpectomy (only the tumor is removed). In a longterm study of the effectiveness of these two treatments, 701 women with breast cancer were randomly assigned to one of two treatment groups. One group received mastectomies and the other group received lumpectomies and radiation. Both groups were followed for 20 years after surgery. It was reported that there was no statistically significant difference in the proportion surviving for 20 years for the two treatments (Associated Press, October 17,2002). What hypotheses do you think the researchers tested in order to reach the given conclusion? Did the researchers reject or fail to reject the null hypothesis?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free