Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Each person in a random sample of 228 male teenagers and a random sample of 306 female teenagers was asked how many hours he or she spent online in a typical week (Ipsos, January 25,2006 ). The sample mean and standard deviation were \(15.1\) hours and \(11.4\) hours for males and \(14.1\) and \(11.8\) for females. a. The standard deviation for each of the samples is large, indicating a lot of variability in the responses to the question. Explain why it is not reasonable to think that the distribution of responses would be approximately normal for either the population of male teenagers or the population of female teenagers. Hint: The number of hours spent online in a typical week cannot be negative. b. Given your response to Part (a), would it be appropriate to use the two- sample \(t\) test to test the null hypothesis that there is no difference in the mean number of hours spent online in a typical week for male teenagers and female teenagers? Explain why or why not. c. If appropriate, carry out a test to determine if there is convincing evidence that the mean number of hours spent online in a typical week is greater for male teenagers than for female teenagers. Use a \(.05\) significance level.

Short Answer

Expert verified
The large variability and the range of possible responses makes it unlikely that the distribution of responses is approximately normal for either male or female teens. Despite this, the two-sample t test may still be used due to the large sample sizes. Based on the t test performed with the given data, a conclusion should be drawn about whether there's significant evidence to support the hypothesis that male teenagers spend more time online in a typical week than female teenagers, with the decision based on whether the p-value is less than the significance level of .05.

Step by step solution

01

Understanding the distribution of responses

The distribution of responses (i.e., the number of hours spent online) for either the male or female population won't be approximately normal. This is because the values can't be less than zero, so the distribution is not symmetric around the mean. The variability is large, indicating that there are many data points far from the mean, which would make the distribution skewed to the right.
02

Considering the use a two-sample t test

Despite the concern about the non-normal distribution of responses, a two-sample t test may be appropriate because of the Central Limit Theorem, which states that the distribution of sample means will tend to be normal even if the distribution of the individual data points is not, as long as the sample size is large enough. In this case, the sample size for each group (228 for males and 306 for females) may be considered large enough to use the t test, as a rule of thumb often mentioned is that if sample sizes are greater than 30, the t test can be used.
03

Performing the two-sample t test

The null hypothesis for the two-sample t test is that the two populations have the same mean. Here, this translates to there being no difference in the average time spent online by male and female teens. The alternative hypothesis is that males spend significantly more time online. We calculate the t statistic using the formula: \(t = \frac{{(mean1 - mean2) - (hypothesized difference)}}{{\sqrt{{(std dev1^2 / n1) + (std dev2^2 / n2)}}}}\), where the values correspond to male (1) and female (2) data. Plug in the given values to calculate the t value and then use a t-table or software to find the p-value for this t-statistic with appropriate degrees of freedom (n1 + n2 - 2). Compare the p-value to the given significance level (.05) to decide whether to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

"Smartest People Often Dumbest About Sunburns" is the headline of an article that appeared in the San Luis Obispo Tribune (July 19,2006 ). The article states that "those with a college degree reported a higher incidence of sunburn that those without a high school degree43 percent versus 25 percent." For purposes of this exercise, suppose that these percentages were based on random samples of size 200 from each of the two groups of interest (college graduates and those without a high school degree). Is there convincing evidence that the proportion experiencing a sunburn is higher for college graduates than it is for those without a high school degree? Answer based on a test with a \(.05\) significance level.

Two proposed computer mouse designs were compared recording wrist extension in degrees for 24 people who each used both mouse types ("Comparative Study of Two Computer Mouse Designs" Cornell Human Factors Laboratory Technical Report RP7992). The difference in wrist extension was computed by subtracting extension for mouse type \(\mathrm{B}\) from the wrist extension for mouse type \(\mathrm{A}\) for each student. The mean difference was reported to be \(8.82\) degrees. Assume that it is reasonable to regard this sample of 24 people as representative of the population of computer users. a. Suppose that the standard deviation of the differences was 10 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(\mathrm{A}\) is greater than for mouse type \(\mathrm{B}\) ? Use a \(.05\) significance level. b. Suppose that the standard deviation of the differences was 25 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(\mathrm{A}\) is greater than for mouse type B? Use a .05 significance level. c. Briefly explain why a different conclusion was reached in the hypothesis tests of Parts (a) and (b).

Some commercial airplanes recirculate approximately \(50 \%\) of the cabin air in order to increase fuel efficiency. The authors of the paper "Aircraft Cabin Air Recirculation and Symptoms of the Common Cold" (Journal of the American Medical Association [2002]: \(483-486\) ) studied 1100 airline passengers who flew from San Francisco to Denver between January and April 1999. Some passengers traveled on airplanes that recirculated air and others traveled on planes that did not recirculate air. Of the 517 passengers who flew on planes that did not recirculate air, 108 reported post-flight respiratory symptoms, while 111 of the 583 passengers on planes that did recirculate air reported such symptoms. Is there sufficient evidence to conclude that the proportion of passengers with post-flight respiratory symptoms differs for planes that do and do not recirculate air? Test the appropriate hypotheses using \(\alpha=.05\). You may assume that it is reasonable to regard these two samples as being independently selected and as representative of the two populations of interest.

The article "Foraging Behavior of the Indian False Vampire Bat" (Biotropica \([1991]: 63-67\) ) reported that 36 of 193 female bats in flight spent more than 5 min in the air before locating food. For male bats, 64 of 168 spent more than 5 min in the air. Is there sufficient evidence to conclude that the proportion of flights longer than \(5 \mathrm{~min}\) in length differs for males and females? Test the relevant hypotheses using \(\alpha=.01\).

The article "Religion and Well-Being Among Canadian University Students: The Role of Faith Groups on Campus" (Journal for the Scientific Study of Religion \([1994]: 62-73\) ) compared the self-esteem of students who belonged to Christian clubs and students who did not belong to such groups. Each student in a random sample of \(n=169\) members of Christian groups (the affiliated group) completed a questionnaire designed to measure self-esteem. The same questionnaire was also completed by each student in a random sample of \(n=124\) students who did not belong to a religious club (the unaffiliated group). The mean self-esteem score for the affiliated group was \(25.08\), and the mean for the unaffiliated group was \(24.55 .\) The sample standard deviations weren't given in the article, but suppose that they were 10 for the affiliated group and 8 for the unaffiliated group. Is there evidence that the true mean self- esteem score differs for affiliated and unaffiliated students? Test the relevant hypotheses using a significance level of \(.01\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free