Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that you were interested in investigating the effect of a drug that is to be used in the treatment of patients who have glaucoma in both eyes. A comparison between the mean reduction in eye pressure for this drug and for a standard treatment is desired. Both treatments are applied directly to the eye. a. Describe how you would go about collecting data for your investigation. b. Does your method result in paired data? c. Can you think of a reasonable method of collecting data that would result in independent samples? Would such an experiment be as informative as a paired experiment? Comment.

Short Answer

Expert verified
a) You would conduct a randomised controlled trial, assigning one treatment to each patient randomly and compare the mean reduction in eye pressure. b) The data collected would not be paired, as each patient received only one type of treatment. c) You could collect independent samples by assigning one treatment to each eye randomly, but this would not be as informative as a paired experiment since the variation between patients might affect the comparison.

Step by step solution

01

Designing The Study

For part a, you could conduct a randomised controlled trial, where patients are randomly assigned to receive either the new drug or the standard treatment. The reduction in eye pressure would be measured for all patients, and the mean reductions for the two groups would be compared. Care would be taken to ensure that the groups are as similar as possible in all relevant aspects (e.g., age, severity of glaucoma, etc.) except for the treatment they receive. This would help to isolate the effect of the treatment.
02

Determining The Type Of Data

For part b, the method described in step 1 would not yield paired data, as each patient only receives one type of treatment. The data pairs in a paired data set typically come from the same subject or related subjects. Since in this experiment every patient receives one type of treatment, the data from different patients are independent rather than paired.
03

Suggesting An Alternative Method

For part c, you could collect independent samples by randomly assigning one treatment to each eye of a patient. Since each eye is treated differently, the response (reduction in eye pressure) of one eye would be independent of the other. While this experiment would involve independent samples, it would not be as informative as a paired experiment. In a paired experiment, by applying both treatments to the same patient, we eliminate the variation between patients, which allows us to precisely measure the difference in effectiveness of the two treatments. In contrast, in an experiment with independent samples, variations between patients can confound the comparison of the treatments.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two proposed computer mouse designs were compared recording wrist extension in degrees for 24 people who each used both mouse types ("Comparative Study of Two Computer Mouse Designs" Cornell Human Factors Laboratory Technical Report RP7992). The difference in wrist extension was computed by subtracting extension for mouse type \(\mathrm{B}\) from the wrist extension for mouse type \(\mathrm{A}\) for each student. The mean difference was reported to be \(8.82\) degrees. Assume that it is reasonable to regard this sample of 24 people as representative of the population of computer users. a. Suppose that the standard deviation of the differences was 10 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(\mathrm{A}\) is greater than for mouse type \(\mathrm{B}\) ? Use a \(.05\) significance level. b. Suppose that the standard deviation of the differences was 25 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(\mathrm{A}\) is greater than for mouse type B? Use a .05 significance level. c. Briefly explain why a different conclusion was reached in the hypothesis tests of Parts (a) and (b).

The article "The Sorority Rush Process: SelfSelection, Acceptance Criteria, and the Effect of Rejection" (Journal of College Student Development [1994]: \(346-353\) ) reported on a study of factors associated with the decision to rush a sorority. Fifty-four women who rushed a sorority and 51 women who did not were asked how often they drank alcoholic beverages. For the sorority rush group, the mean was \(2.72\) drinks per week and the standard deviation .86. For the group who did not rush, the mean was \(2.11\) and the standard deviation \(1.02 .\) Is there evidence to support the claim that those who rush a sorority drink more than those who do not rush? Test the relevant hypotheses using \(\alpha=.01\). What assumptions are required in order for the two-sample \(t\) test to be appropriate?

The article "A 'White' Name Found to Help in Job Search" (Associated Press, January 15,2003 ) described in experiment to investigate if it helps to have a "whitesounding" first name when looking for a job. Researchers sent 5000 resumes in response to ads that appeared in the Boston Globe and Chicago Tribune. The resumes were identical except that 2500 of them had "white- sounding" first names, such as Brett and Emily, whereas the other 2500 had "black-sounding" names such as Tamika and Rasheed. Resumes of the first type elicited 250 responses and resumes of the second type only 167 responses. Do these data support the theory that the proportion receiving positive responses is higher for those resumes with "whitesounding first" names?

In a study of malpractice claims where a settlement had been reached, two random samples were selected: a random sample of 515 closed malpractice claims that were found not to involve medical errors and a random sample of 889 claims that were found to involve errors (New England Journal of Medicine [2006]: 2024-2033). The following statement appeared in the referenced paper: "When claims not involving errors were compensated, payments were significantly lower on average than were payments for claims involving errors \((\$ 313,205\) vs. \(\$ 521,560, P=0.004) . "\) a. What hypotheses must the researchers have tested in order to reach the stated conclusion? b. Which of the following could have been the value of the test statistic for the hypothesis test? Explain your reasoning. i. \(t=5.00\) ii. \(t=2.65\) iii. \(t=2.33\) iv. \(t=1.47\)

An electronic implant that stimulates the auditory nerve has been used to restore partial hearing to a number of deaf people. In a study of implant acceptability (Los Angeles Times, January 29,1985 ), 250 adults born deaf and 250 adults who went deaf after learning to speak were followed for a period of time after receiving an implant. Of those deaf from birth, 75 had removed the implant, whereas only 25 of those who went deaf after learning to speak had done so. Does this suggest that the true proportion who remove the implants differs for those that were born deaf and those that went deaf after learning to speak? Test the relevant hypotheses using a .01 significance level.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free