Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider two populations for which \(\mu_{1}=30, \sigma_{1}=2\), \(\mu_{2}=25\), and \(\sigma_{2}=3\). Suppose that two independent random samples of sizes \(n_{1}=40\) and \(n_{2}=50\) are selected. Describe the approximate sampling distribution of \(\bar{x}_{1}-\bar{x}_{2}\) (center, spread, and shape).

Short Answer

Expert verified
The center (expected mean) of the sampling distribution of \(\bar{x}_{1}-\bar{x}_{2}\) is 5, the spread (standard deviation) is approximately 0.48, and the shape is approximately normal.

Step by step solution

01

Determine the expected value of \(\bar{x}_{1}-\bar{x}_{2}\)

This can be found by subtracting the population means \(E[\bar{x}_{1} - \bar{x}_{2}] = \mu_{1} - \mu_{2}\). Substituting the given values we get, \(E[\bar{x}_{1}-\bar{x}_{2}] = 30 - 25 = 5\).
02

Determine the standard deviation of \(\bar{x}_{1}-\bar{x}_{2}\)

The standard deviation \(\sigma_{\bar{x}_{1} - \bar{x}_{2}}\) is given by the formula: \(\sqrt{\sigma_{1}^{2}/n_{1} + \sigma_{2}^{2}/n_{2}}\). Replacing our known values into the formula: \(\sqrt{2^2/40 + 3^2/50} = \sqrt{0.05 + 0.18} = \sqrt{0.23} ≈ 0.48\). The standard deviation, therefore, is about 0.48.
03

Determine the shape of the distribution

The Central Limit Theorem (CLT) states that if the sample size is large enough (>30), the distribution of the sample means will approximate a normal distribution, regardless of the shape of the population distribution. Since both sample sizes, \(n_{1}=40\) and \(n_{2}=50\), exceed 30, the distribution of \(\bar{x}_{1}-\bar{x}_{2}\) will be approximately normal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a study of malpractice claims where a settlement had been reached, two random samples were selected: a random sample of 515 closed malpractice claims that were found not to involve medical errors and a random sample of 889 claims that were found to involve errors (New England Journal of Medicine [2006]: 2024-2033). The following statement appeared in the referenced paper: "When claims not involving errors were compensated, payments were significantly lower on average than were payments for claims involving errors \((\$ 313,205\) vs. \(\$ 521,560, P=0.004) . "\) a. What hypotheses must the researchers have tested in order to reach the stated conclusion? b. Which of the following could have been the value of the test statistic for the hypothesis test? Explain your reasoning. i. \(t=5.00\) ii. \(t=2.65\) iii. \(t=2.33\) iv. \(t=1.47\)

An Associated Press article (San Luis Obispo Telegram-Tribune, September 23,1995 ) examined the changing attitudes of Catholic priests. National surveys of priests aged 26 to 35 were conducted in 1985 and again in 1993\. The priests surveyed were asked whether they agreed with the following statement: Celibacy should be a matter of personal choice for priests. In \(1985,69 \%\) of those surveyed agreed; in \(1993,38 \%\) agreed. Suppose that the samples were randomly selected and that the sample sizes were both 200 . Is there evidence that the proportion of priests who agreed that celibacy should be a matter of personal choice declined from 1985 to 1993 ? Use \(\alpha=.05\).

The article "Portable MP3 Player Ownership Reaches New High" (Ipsos Insight, June 29,2006 ) reported that in \(2006,20 \%\) of those in a random sample of 1112 Americans age 12 and older indicated that they owned an MP3 player. In a similar survey conducted in 2005 , only \(15 \%\) reported owning an MP3 player. Suppose that the 2005 figure was also based on a random sample of size 1112 . Estimate the difference in the proportion of Americans age 12 and older who owned an MP3 player in 2006 and the corresponding proportion for 2005 using a 95\% confidence interval. Is zero included in the interval? What does this tell you about the change in this proportion from 2005 to \(2006 ?\)

Public Agenda conducted a survey of 1379 parents and 1342 students in grades \(6-12\) regarding the importance of science and mathematics in the school curriculum (Associated Press, February 15,2006 ). It was reported that \(50 \%\) of students thought that understanding science and having strong math skills are essential for them to succeed in life after school, whereas \(62 \%\) of the parents thought it was crucial for today's students to learn science and higher-level math. The two samples-parents and students-were selected independently of one another. Is there sufficient evidence to conclude that the proportion of parents who regard science and mathematics as crucial is different than the corresponding proportion for students in grades \(6-12 ?\) Test the relevant hypotheses using a significance level of \(.05\).

The article "Spray Flu Vaccine May Work Better Than Injections for Tots" (San Luis Obispo Tribune, May 2,2006 ) described a study that compared flu vaccine administered by injection and flu vaccine administered as a nasal spray. Each of the 8000 children under the age of 5 that participated in the study received both a nasal spray and an injection, but only one was the real vaccine and the other was salt water. At the end of the flu season, it was determined that \(3.9 \%\) of the 4000 children receiving the real vaccine by nasal spray got sick with the flu and \(8.6 \%\) of the 4000 receiving the real vaccine by injection got sick with the flu. a. Why would the researchers give every child both a nasal spray and an injection? b. Use the given data to estimate the difference in the proportion of children who get sick with the flu after being vaccinated with an injection and the proportion of children who get sick with the flu after being vaccinated with the nasal spray using a \(99 \%\) confidence interval. Based on the confidence interval, would you conclude that the proportion of children who get the flu is different for the two vaccination methods?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free