Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A county commissioner must vote on a resolution that would commit substantial resources to the construction of a sewer in an outlying residential area. Her fiscal decisions have been criticized in the past, so she decides to take a survey of constituents to find out whether they favor spending money for a sewer system. She will vote to appropriate funds only if she can be fairly certain that a majority of the people in her district favor the measure. What hypotheses should she test?

Short Answer

Expert verified
H0: A majority of constituents do not favor the spending for a sewer system. H1: A majority of constituents favor the spending for a sewer system. The commissioner must collect data through a survey and perform a statistical analysis to determine whether the null hypothesis can be rejected or not. Based on the result of the hypothesis test, she will make her decision.

Step by step solution

01

Formulate the null hypothesis (H0)

The null hypothesis is the initial presumption that a proposition or claim is true. It represents a statement of no effect or no difference. In this scenario, it would be: 'A majority of the constituents do not favor the spending for a sewer system.'
02

Formulate the alternative hypothesis (H1)

The alternative hypothesis is the claim or contention we are willing to accept once we have found the null hypothesis to be false. Here it is: 'A majority of the constituents favor the spending for a sewer system.'
03

Gathering and analyzing data

After the hypotheses have been set, the data should be collected through a survey. Then, statistical analysis would be deployed to determine whether the null hypothesis could be rejected or not. If the null hypothesis is rejected, it indicates that a majority of the constituents favor the proposal.
04

Decision making

Based on the results of the hypothesis test, the commissioner will make her decision. If the null hypothesis is rejected, she will vote to appropriate funds as a significant majority support the measure. If the null hypothesis is not rejected, she will refrain from voting to appropriate funds.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Pizza Hut, after test-marketing a new product called the Bigfoot Pizza, concluded that introduction of the Bigfoot nationwide would increase its sales by more than \(14 \%\) (USA Today, April 2, 1993). This conclusion was based on recording sales information for a random sample of Pizza Hut restaurants selected for the marketing trial. With \(\mu\) denoting the mean percentage increase in sales for all Pizza Hut restaurants, consider using the sample data to decide between \(H_{0}: \mu=14\) and \(H_{a}: \mu>14\). a. Is Pizza Hut's conclusion consistent with a decision to reject \(H_{0}\) or to fail to reject \(H_{0}\) ? b. If Pizza Hut is incorrect in its conclusion, is the company making a Type I or a Type II error?

To determine whether the pipe welds in a nuclear power plant meet specifications, a random sample of welds is selected and tests are conducted on each weld in the sample. Weld strength is measured as the force required to break the weld. Suppose that the specifications state that the mean strength of welds should exceed 100 \(\mathrm{lb} / \mathrm{in} .^{2}\). The inspection team decides to test \(H_{0}: \mu=100\) versus \(H_{a}: \mu>100 .\) Explain why this alternative hypothesis was chosen rather than \(\mu<100\).

Newly purchased automobile tires of a certain type are supposed to be filled to a pressure of 30 psi. Let \(\mu\) denote the true average pressure. Find the \(P\) -value associated with each of the following given \(z\) statistic values for testing \(H_{0}: \mu=30\) versus \(H_{a}: \mu \neq 30\) when \(\sigma\) is known: a. \(2.10\) d. \(1.44\) b. \(-1.75\) e. \(-5.00\) c. \(0.58\)

Are young women delaying marriage and marrying at a later age? This question was addressed in a report issued by the Census Bureau (Associated Press, June 8 , 1991). The report stated that in 1970 (based on census results) the mean age of brides marrying for the first time was \(20.8\) years. In 1990 (based on a sample, because census results were not yet available), the mean was \(23.9\). Suppose that the 1990 sample mean had been based on a random sample of size 100 and that the sample standard deviation was \(6.4\). Is there sufficient evidence to support the claim that in 1990 women were marrying later in life than in 1970 ? Test the relevant hypotheses using \(\alpha=.01\). (Note: It is probably not reasonable to think that the distribution of age at first marriage is normal in shape.)

A well-designed and safe workplace can contribute greatly to increasing productivity. It is especially important that workers not be asked to perform tasks, such as lifting, that exceed their capabilities. The following data on maximum weight of lift (MWOL, in kilograms) for a frequency of 4 lifts per minute were reported in the article "The Effects of Speed, Frequency, and Load on Measured Hand Forces for a Floor-to-Knuckle Lifting Task" (Ergonomics \([1992]: 833-843)\) : \(\begin{array}{lllll}25.8 & 36.6 & 26.3 & 21.8 & 27.2\end{array}\) Suppose that it is reasonable to regard the sample as a random sample from the population of healthy males, age \(18-30\). Do the data suggest that the population mean MWOL exceeds 25 ? Carry out a test of the relevant hypotheses using a \(.05\) significance level.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free