Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When a published article reports the results of many hypothesis tests, the \(P\) -values are not usually given. Instead, the following type of coding scheme is frequently used: \({ }^{*} p=.05,{ }^{* *} p=.01,{ }^{* * *} p=.001,{ }^{* * * *} p=.0001\). Which of the symbols would be used to code for each of the following \(P\) -values? a. \(.037\) c. 072 b. \(.0026\) d. \(.0003\)

Short Answer

Expert verified
The symbols for the P-values .037, .072, .0026, and .0003 are \(*\), no symbol, \(**\), and \(***\) respectively.

Step by step solution

01

Identify Relevant Symbol for P-value a

If we look at the P-value of .037, it's less than .05 but greater than .01. Therefore, according to the code, the symbol for P-value .037 is \(*\).
02

Identify Relevant Symbol for P-value c

The P-value .072 is greater than .05 so it doesn't get any of the symbols associated. Thus, for the P-value .072 there would be no symbol.
03

Identify Relevant Symbol for P-value b

For the given P-value .0026, it's less than .01 but greater than .001. Therefore, according to the code, the symbol for P-value .0026 is \(**\).
04

Identify Relevant Symbol for P-value d

Looking at the provided P-value .0003, it's less than .001 but greater than .0001. Therefore, the relevant symbol for this P-value would be \(***\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Water samples are taken from water used for cooling as it is being discharged from a power plant into a river. It has been determined that as long as the mean temperature of the discharged water is at most \(150^{\circ} \mathrm{F}\), there will be no negative effects on the river ecosystem. To investigate whether the plant is in compliance with regulations that prohibit a mean discharge water temperature above \(150^{\circ} \mathrm{F}\), a scientist will take 50 water samples at randomly selected times and will record the water temperature of each sample. She will then use a \(z\) statistic $$ z=\frac{\bar{x}-150}{\frac{\sigma}{\sqrt{n}}} $$ to decide between the hypotheses \(H_{0}: \mu=150\) and \(H_{a^{2}}\) \(\mu>150\), where \(\mu\) is the mean temperature of discharged water. Assume that \(\sigma\) is known to be 10 . a. Explain why use of the \(z\) statistic is appropriate in this setting. b. Describe Type I and Type II errors in this context. c. The rejection of \(H_{0}\) when \(z \geq 1.8\) corresponds to what value of \(\alpha ?\) (That is, what is the area under the \(z\) curve to the right of \(1.8 ?\) ) d. Suppose that the true value for \(\mu\) is 153 and that \(H_{0}\) is to be rejected if \(z \geq 1.8 .\) Draw a sketch (similar to that of Figure \(10.5\) ) of the sampling distribution of \(\bar{x}\), and shade the region that would represent \(\beta\), the probability of making a Type II error. e. For the hypotheses and test procedure described, compute the value of \(\beta\) when \(\mu=153\). f. For the hypotheses and test procedure described, what is the value of \(\beta\) if \(\mu=160 ?\) g. If \(H_{0}\) is rejected when \(z \geq 1.8\) and \(\bar{x}=152.8\), what is the appropriate conclusion? What type of error might have been made in reaching this conclusion?

A comprehensive study conducted by the National Institute of Child Health and Human Development tracked more than 1000 children from an early age through elementary school (New York Times, November 1, 2005). The study concluded that children who spent more than 30 hours a week in child care before entering school tended to score higher in math and reading when they were in the third grade. The researchers cautioned that the findings should not be a cause for alarm because the effects of child care were found to be small. Explain how the difference between the mean math score for third graders who spent long hours in child care and the overall mean for thirdgraders could be small but the researchers could still reach the conclusion that the mean for the child care group is significantly higher than the overall mean for third-graders.

Let \(\pi\) denote the proportion of grocery store customers that use the store's club card. For a large sample \(z\) test of \(H_{0}: \pi=.5\) versus \(H_{a}: \pi>.5\), find the \(P\) -value associated with each of the given values of the test statistic: a. \(1.40\) d. \(2.45\) b. \(0.93\) e. \(-0.17\) c. \(1.96\)

In a study of computer use, 1000 randomly selected Canadian Internet users were asked how much time they spend using the Internet in a typical week (Ipsos Reid, August 9,2005 ). The mean of the 1000 resulting observations was \(12.7\) hours. a. The sample standard deviation was not reported, but suppose that it was 5 hours. Carry out a hypothesis test with a significance level of \(.05\) to decide if there is convincing evidence that the mean time spent using the Internet by Canadians is greater than \(12.5\) hours. b. Now suppose that the sample standard deviation was 2 hours. Carry out a hypothesis test with a significance level of . 05 to decide if there is convincing evidence that the mean time spent using the Internet by Canadians is greater than \(12.5\) hours.

Researchers at the University of Washington and Harvard University analyzed records of breast cancer screening and diagnostic evaluations ("Mammogram Cancer Scares More Frequent than Thought," USA Today, April 16,1998 ). Discussing the benefits and downsides of the screening process, the article states that, although the rate of false-positives is higher than previously thought, if radiologists were less aggressive in following up on suspicious tests, the rate of false-positives would fall but the rate of missed cancers would rise. Suppose that such a screening test is used to decide between a null hypothesis of \(H_{0}:\) no cancer is present and an alternative hypothesis of \(H_{a}:\) cancer is present. (Although these are not hypotheses about a population characteristic, this exercise illustrates the definitions of Type I and Type II errors.) a. Would a false-positive (thinking that cancer is present when in fact it is not) be a Type I error or a Type II error? b. Describe a Type I error in the context of this problem, and discuss the consequences of making a Type I error. c. Describe a Type II error in the context of this problem, and discuss the consequences of making a Type II error. d. What aspect of the relationship between the probability of Type I and Type II errors is being described by the statement in the article that if radiologists were less aggressive in following up on suspicious tests, the rate of false-positives would fall but the rate of missed cancers would rise?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free