Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Seat belts help prevent injuries in automobile accidents, but they certainly don't offer complete protection in extreme situations. A random sample of 319 front-seat occupants involved in head-on collisions in a certain region resulted in 95 people who sustained no injuries ("Influencing Factors on the Injury Severity of Restrained Front Seat Occupants in Car-to-Car Head-on Collisions," Accident Analysis and Prevention \([1995]: 143-150\) ). Does this suggest that the true (population) proportion of uninjured occupants exceeds .25? State and test the relevant hypotheses using a significance level of \(.05\).

Short Answer

Expert verified
The exact conclusion will depend on the computed P-value and the decision made in Step 4, but in general, the conclusion would be that there is sufficient/not sufficient evidence at the 0.05 level of significance to conclude that the population proportion of uninjured occupants in head-on collisions exceeds 0.25.

Step by step solution

01

State the Hypotheses

The null hypothesis, denoted by \(H_0\), is that the population proportion \(p\) is equal to 0.25. The alternative hypothesis, denoted by \(H_A\), is that the population proportion \(p\) is greater than 0.25.\nSo, \(H_0: p = 0.25\)\n \(H_A: p > 0.25\)
02

Compute the Test Statistic

The test statistic for testing a hypothesis about a population proportion \(p\) when the null hypothesis is \(H0: p = p0\) is \[Z = \frac{\hat{p} - p0}{\sqrt{\frac{p0(1 - p0)}{n}}}\] where \(\hat{p}\) is the sample proportion and \(n\) is the sample size. Here, \(\hat{p} = \frac{95}{319}\) and \(n = 319\). So, plug in values and compute the test statistic.
03

Find the P-value

The P-value is the probability that a standard normal random variable is more than the observed value of the test statistic, under the null hypothesis. You can find this by looking up the value of the test statistic in a standard normal table or by using technology.
04

Make a Decision

If the P-value is less than the significance level of 0.05, reject the null hypothesis. Otherwise, do not reject the null hypothesis.
05

State the Conclusion

Based on the decision in Step 4, state the conclusion in context: If the null hypothesis is rejected, there is sufficient evidence at the 0.05 level of significance to conclude that the population proportion of uninjured occupants in head-on collisions exceeds 0.25. If the null hypothesis is not rejected, there is not sufficient evidence at the 0.05 level to conclude that the population proportion exceeds 0.25.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Are young women delaying marriage and marrying at a later age? This question was addressed in a report issued by the Census Bureau (Associated Press, June 8 , 1991). The report stated that in 1970 (based on census results) the mean age of brides marrying for the first time was \(20.8\) years. In 1990 (based on a sample, because census results were not yet available), the mean was \(23.9\). Suppose that the 1990 sample mean had been based on a random sample of size 100 and that the sample standard deviation was \(6.4\). Is there sufficient evidence to support the claim that in 1990 women were marrying later in life than in 1970 ? Test the relevant hypotheses using \(\alpha=.01\). (Note: It is probably not reasonable to think that the distribution of age at first marriage is normal in shape.)

The report "2005 Electronic Monitoring \& Surveillance Survey: Many Companies Monitoring, Recording, Videotaping-and Firing-Employees" (American Management Association, 2005) summarized the results of a survey of 526 U.S. businesses. Four hundred of these companies indicated that they monitor employees' web site visits. For purposes of this exercise, assume that it is reasonable to regard this sample as representative of businesses in the United States. a. Is there sufficient evidence to conclude that more than \(75 \%\) of U.S. businesses monitor employees' web site visits? Test the appropriate hypotheses using a significance level of \(.01\). b. Is there sufficient evidence to conclude that a majority of U.S. businesses monitor employees' web site visits? Test the appropriate hypotheses using a significance level of \(.01\).

What motivates companies to offer stock ownership plans to their employees? In a random sample of 87 companies having such plans, 54 said that the primary rationale was tax related ("The Advantages and Disadvantages of ESOPs: A Long- Range Analysis," Journal of Small Business Management \([1991]: 15-21\) ). Does this information provide strong support for concluding that more than half of all such firms feel this way?

In a survey conducted by Yahoo Small Business. 1432 of 1813 adults surveyed said that they would alter their shopping habits if gas prices remain high (Associated Press, November 30,2005 ). The article did not say how the sample was selected, but for purposes of this exercise, assume that it is reasonable to regard this sample as representative of adult Americans. Based on these survey data, is it reasonable to conclude that more than three-quarters of adult Americans plan to alter their shopping habits if gas prices remain high?

Speed, size, and strength are thought to be important factors in football performance. The article "Physical and Performance Characteristics of NCAA Division I Football Players" (Research Quarterly for Exercise and Sport \([1990]: 395-401\) ) reported on physical characteristics of Division I starting football players in the 1988 football season. Information for teams ranked in the top 20 was easily obtained, and it was reported that the mean weight of starters on top- 20 teams was \(105 \mathrm{~kg}\). A random sample of 33 starting players (various positions were represented) from Division I teams that were not ranked in the top 20 resulted in a sample mean weight of \(103.3 \mathrm{~kg}\) and a sample standard deviation of \(16.3 \mathrm{~kg}\). Is there sufficient evidence to conclude that the mean weight for nontop- 20 starters is less than 105, the known value for top20 teams?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free