Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Are young women delaying marriage and marrying at a later age? This question was addressed in a report issued by the Census Bureau (Associated Press, June 8 , 1991). The report stated that in 1970 (based on census results) the mean age of brides marrying for the first time was \(20.8\) years. In 1990 (based on a sample, because census results were not yet available), the mean was \(23.9\). Suppose that the 1990 sample mean had been based on a random sample of size 100 and that the sample standard deviation was \(6.4\). Is there sufficient evidence to support the claim that in 1990 women were marrying later in life than in 1970 ? Test the relevant hypotheses using \(\alpha=.01\). (Note: It is probably not reasonable to think that the distribution of age at first marriage is normal in shape.)

Short Answer

Expert verified
The final answer to the problem depends on the computed t-value and the critical t-value. If the computed t is greater than the critical t, we reject the null hypothesis and conclude that there is sufficient evidence to support the claim that women in 1990 were marrying later than in 1970. Otherwise, we cannot reject the null hypothesis, meaning that there is not enough evidence to state that the mean age of brides marrying for the first time in 1990 was larger than in 1970.

Step by step solution

01

Set up the hypothesis

Firstly, we have to set up the null and alternative hypothesis. The null hypothesis (H0) is that the mean age of women marrying in 1990 is equal to the mean age of women marrying in 1970. The alternative hypothesis (H1) is the mean age for 1990 is greater than the mean age for 1970. Expressed in mathematical terms, H0: µ = 20.8 and H1: µ > 20.8.
02

Compute the Test Statistic

We will compute the t-value using the formula \(t = \frac{(\bar{x} - µ_0)}{s/\sqrt{n}}\), where \( \bar{x} \) is the sample mean, \( µ_0 \) is the hypothesized population mean, \(s \) is the sample standard deviation, and \(n \) is the sample size. Plugging in the numbers gives \(t = \frac{23.9 - 20.8}{6.4/\sqrt{100}}\).
03

Find the Critical Value and Make Decision

The critical t-value for a one-tailed test at significance level 0.01 with 99 degrees of freedom (df = n-1 = 100-1 = 99) can be found in a t-distribution table or using a statistics software. Suppose this value is t_c. If the calculated t-value is greater than the critical value, i.e., if \(t > t_c\), we reject the null hypothesis and support the claim that in 1990 women were marrying later in life than in 1970.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "Poll Finds Most Oppose Return to Draft, Wouldn't Encourage Children to Enlist" (Associated Press, December 18,2005 ) reports that in a random sample of 1000 American adults, 700 indicated that they oppose the reinstatement of a military draft. Is there convincing evidence that the proportion of American adults who oppose reinstatement of the draft is greater than twothirds? Use a significance level of \(.05\).

Water samples are taken from water used for cooling as it is being discharged from a power plant into a river. It has been determined that as long as the mean temperature of the discharged water is at most \(150^{\circ} \mathrm{F}\), there will be no negative effects on the river's ecosystem. To investigate whether the plant is in compliance with regulations that prohibit a mean discharge water temperature above \(150^{\circ} \mathrm{F}\), researchers will take 50 water samples at randomly selected times and record the temperature of each sample. The resulting data will be used to test the hypotheses \(H_{0}: \mu=150^{\circ} \mathrm{F}\) versus \(H_{a}: \mu>150^{\circ} \mathrm{F}\). In the context of this example, describe Type I and Type II errors. Which type of error would you consider more serious? Explain.

Give as much information as you can about the \(P\) -value of a \(t\) test in each of the following situations: a. Two-tailed test, \(\mathrm{df}=9, t=0.73\) b. Upper-tailed test, \(\mathrm{df}=10, t=-0.5\) c. Lower-tailed test, \(n=20, t=-2.1\) d. Lower-tailed test, \(n=20, t=-5.1\) e. Two-tailed test, \(n=40, t=1.7\)

The report "2005 Electronic Monitoring \& Surveillance Survey: Many Companies Monitoring, Recording, Videotaping-and Firing-Employees" (American Management Association, 2005) summarized the results of a survey of 526 U.S. businesses. Four hundred of these companies indicated that they monitor employees' web site visits. For purposes of this exercise, assume that it is reasonable to regard this sample as representative of businesses in the United States. a. Is there sufficient evidence to conclude that more than \(75 \%\) of U.S. businesses monitor employees' web site visits? Test the appropriate hypotheses using a significance level of \(.01\). b. Is there sufficient evidence to conclude that a majority of U.S. businesses monitor employees' web site visits? Test the appropriate hypotheses using a significance level of \(.01\).

The article "Credit Cards and College Students: Who Pays, Who Benefits?" (Journal of College Student Development \([1998]: 50-56\) ) described a study of credit card payment practices of college students. According to the authors of the article, the credit card industry asserts that at most \(50 \%\) of college students carry a credit card balance from month to month. However, the authors of the article report that, in a random sample of 310 college students, 217 carried a balance each month. Does this sample provide sufficient evidence to reject the industry claim?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free