Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Researchers have postulated that because of differences in diet, Japanese children have a lower mean blood cholesterol level than U.S. children do. Suppose that the mean level for U.S. children is known to be 170 . Let \(\mu\) represent the true mean blood cholesterol level for Japanese children. What hypotheses should the researchers test?

Short Answer

Expert verified
The null hypothesis (H0) should be \(\mu\) = 170 and the alternative hypothesis (Ha) should be \(\mu\) < 170

Step by step solution

01

Define the null hypothesis

The null hypothesis (H0) should reflect that there's no difference in the mean blood cholesterol level compared to that of US children. So, it should be stated as: H0: \(\mu\) = 170
02

Define the alternative hypothesis

The alternative hypothesis (Ha) should reflect the research hypothesis, which states that the blood cholesterol level of Japanese children is lower than that of the US children. So, it should be stated as: Ha: \(\mu\) < 170

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give as much information as you can about the \(P\) -value of a \(t\) test in each of the following situations: a. Two-tailed test, \(\mathrm{df}=9, t=0.73\) b. Upper-tailed test, \(\mathrm{df}=10, t=-0.5\) c. Lower-tailed test, \(n=20, t=-2.1\) d. Lower-tailed test, \(n=20, t=-5.1\) e. Two-tailed test, \(n=40, t=1.7\)

The article "Caffeine Knowledge, Attitudes, and Consumption in Adult Women" (Journal of Nutrition Education [1992]: \(179-184\) ) reported the following summary statistics on daily caffeine consumption for a random sample of adult women: \(n=47, \bar{x}=215 \mathrm{mg}, s=\) \(235 \mathrm{mg}\), and the data values ranged from 5 to 1176 . a. Does it appear plausible that the population distribution of daily caffeine consumption is normal? Is it necessary to assume a normal population distribution to test hypotheses about the value of the population mean consumption? Explain your reasoning. b. Suppose that it had previously been believed that mean consumption was at most \(200 \mathrm{mg}\). Does the given information contradict this prior belief? Test the appropriate hypotheses at significance level. \(10 .\)

For the following pairs, indicate which do not comply with the rules for setting up hypotheses, and explain why: a. \(H_{0}: \mu=15, H_{a}: \mu=15\) b. \(H_{0}: \pi=.4, H_{a}: \pi>.6\) c. \(H_{0}: \mu=123, H_{a}: \mu<123\) d. \(H_{0}: \mu=123, H_{a}: \mu=125\) e. \(H_{0}: p=.1, H_{a}: p=125\)

The article "Theaters Losing Out to Living Rooms" (San Luis Obispo Tribune, June 17,2005 ) states that movie attendance declined in 2005 . The Associated Press found that 730 of 1000 randomly selected adult Americans preferred to watch movies at home rather than at a movie theater. Is there convincing evidence that the majority of adult Americans prefer to watch movies at home? Test the relevant hypotheses using a \(.05\) significance level.

An article titled "Teen Boys Forget Whatever It Was" appeared in the Australian newspaper The Mercury (April 21, 1997). It described a study of academic performance and attention span and reported that the mean time to distraction for teenage boys working on an independent task was 4 min. Although the sample size was not given in the article, suppose that this mean was based on a random sample of 50 teenage Australian boys and that the sample standard deviation was \(1.4\) min. Is there convincing evidence that the average attention span for teenage boys is less than 5 min? Test the relevant hypotheses using \(\alpha=.01\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free