Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A well-designed and safe workplace can contribute greatly to increasing productivity. It is especially important that workers not be asked to perform tasks, such as lifting, that exceed their capabilities. The following data on maximum weight of lift (MWOL, in kilograms) for a frequency of 4 lifts per minute were reported in the article "The Effects of Speed, Frequency, and Load on Measured Hand Forces for a Floor-to-Knuckle Lifting Task" (Ergonomics \([1992]: 833-843)\) : \(\begin{array}{lllll}25.8 & 36.6 & 26.3 & 21.8 & 27.2\end{array}\) Suppose that it is reasonable to regard the sample as a random sample from the population of healthy males, age \(18-30\). Do the data suggest that the population mean MWOL exceeds 25 ? Carry out a test of the relevant hypotheses using a \(.05\) significance level.

Short Answer

Expert verified
Based on the solution steps, the answer is that the null hypothesis is either rejected or not rejected (needs to be specified after calculations in step 3 and 4), implying that the data either suggest or do not suggest that the population mean MWOL exceeds 25kg.

Step by step solution

01

Formulate the hypotheses

The null hypothesis \(H_0\) is that the population mean MWOL is equal to 25kg. The alternative hypothesis \(H_a\) is that the population mean MWOL is greater than 25kg. This means we are performing a right-tailed test.
02

Calculate the sample mean and sample standard deviation

Using the provided data, calculate the mean and standard deviation. The mean \(\bar{X}\) is the sum of the observations divided by the number of observations. The standard deviation \(s\) is the square root of variance, which is the average of the squared differences from the mean.
03

Determine the test statistic

Use the sample mean, sample standard deviation, and the size of the sample to calculate the test statistic. The test statistic can be calculated using a t-statistic formula: \(t = (\bar{X} - \mu_0)/(s / \sqrt{n})\), where \(\mu_0\) is the population mean under the null hypothesis, in this case, 25, s is the sample standard deviation, and n is the size of the sample.
04

Determine the p-value

Once the test statistic is calculated, determine the p-value associated with it. Since this is a right-tailed test, the p-value is the probability that a t-distributed random variable is greater than the calculated test statistic.
05

Compare the p-value to the significance level and make a decision

If the p-value is less than or equal to the significance level, reject the null hypothesis. If the p-value is greater than the significance level, fail to reject the null hypothesis. In this case, the significance level is 0.05.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a survey conducted by Yahoo Small Business. 1432 of 1813 adults surveyed said that they would alter their shopping habits if gas prices remain high (Associated Press, November 30,2005 ). The article did not say how the sample was selected, but for purposes of this exercise, assume that it is reasonable to regard this sample as representative of adult Americans. Based on these survey data, is it reasonable to conclude that more than three-quarters of adult Americans plan to alter their shopping habits if gas prices remain high?

For the following pairs, indicate which do not comply with the rules for setting up hypotheses, and explain why: a. \(H_{0}: \mu=15, H_{a}: \mu=15\) b. \(H_{0}: \pi=.4, H_{a}: \pi>.6\) c. \(H_{0}: \mu=123, H_{a}: \mu<123\) d. \(H_{0}: \mu=123, H_{a}: \mu=125\) e. \(H_{0}: p=.1, H_{a}: p=125\)

According to the article "Which Adults Do Underage Youth Ask for Cigarettes?" (American Journal of \(P u b\) lic Health [1999]: \(1561-1564\) ), \(43.6 \%\) of the 149 18- to 19 -year-olds in a random sample have been asked to buy cigarettes for an underage smoker. a. Is there convincing evidence that fewer than half of 18 to 19 -year-olds have been approached to buy cigarettes by an underage smoker? b. The article went on to state that of the 110 nonsmoking 18 - to 19 -year- olds, only \(38.2 \%\) had been approached to buy cigarettes for an underage smoker. Is there evidence that less than half of nonsmoking 18 - to 19 -year- olds have been approached to buy cigarettes?

According to a survey of 1000 adult Americans conducted by Opinion Research Corporation, 210 of those surveyed said playing the lottery would be the most practical way for them to accumulate \(\$ 200,000\) in net wealth in their lifetime ("One in Five Believe Path to Riches Is the Lottery," San Luis Obispo Tribune, January 11,2006 ). Although the article does not describe how the sample was selected, for purposes of this exercise, assume that the sample can be regarded as a random sample of adult Americans. Is there convincing evidence that more than \(20 \%\) of adult Americans believe that playing the lottery is the best strategy for accumulating \(\$ 200,000\) in net wealth?

Water samples are taken from water used for cooling as it is being discharged from a power plant into a river. It has been determined that as long as the mean temperature of the discharged water is at most \(150^{\circ} \mathrm{F}\), there will be no negative effects on the river's ecosystem. To investigate whether the plant is in compliance with regulations that prohibit a mean discharge water temperature above \(150^{\circ} \mathrm{F}\), researchers will take 50 water samples at randomly selected times and record the temperature of each sample. The resulting data will be used to test the hypotheses \(H_{0}: \mu=150^{\circ} \mathrm{F}\) versus \(H_{a}: \mu>150^{\circ} \mathrm{F}\). In the context of this example, describe Type I and Type II errors. Which type of error would you consider more serious? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free