Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A certain university has decided to introduce the use of plus and minus with letter grades, as long as there is evidence that more than \(60 \%\) of the faculty favor the change. A random sample of faculty will be selected, and the resulting data will be used to test the relevant hypothe ses. If \(\pi\) represents the true proportion of all faculty that favor a change to plus- minus grading, which of the following pair of hypotheses should the administration test: $$ H_{0}: \pi=.6 \text { versus } H_{a}: \pi<.6 $$ or $$ H_{0}: \pi=.6 \text { versus } H_{a}: \pi>.6 $$ Explain your choice.

Short Answer

Expert verified
The correct pair of hypotheses to test by the administration would be \(H_{0}: \pi = 0.6\) versus \(H_{a}: \pi > 0.6\).

Step by step solution

01

Understand the context

The decision of the university to introduce a change in the grading system depends on the faculty's opinion. The decision will only go through if more than 60% of the faculty favor it.
02

Formulate the hypotheses

The null hypothesis \(H_{0}\) generally assumes that the status quo is maintained, that is no change or difference exists, while the alternative hypothesis \(H_{a}\) assumes a change, a difference, or an inequality. Knowing the university's rule that change will only be implemented if more than 60% of faculty favor the change, the null hypothesis should hence be set up as \(H_{0}: \pi = 0.6\), i.e., exactly 60% of the faculty are in favor. The alternative hypothesis then is \(H_{a}: \pi > 0.6\), i.e., more than 60% of the faculty are in favor.
03

Choose the correct pair of hypotheses

Considering the decision rule given by the university and the interpretations of null and alternative hypotheses, the correct pair of hypotheses to test would be: \(H_{0}: \pi = 0.6\) versus \(H_{a}: \pi > 0.6\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A student organization uses the proceeds from a particular soft-drink dispensing machine to finance its activities. The price per can had been \(\$ 0.75\) for a long time, and the average daily revenue during that period had been \(\$ 75.00\). The price was recently increased to \(\$ 1.00\) per can. A random sample of \(n=20\) days after the price increase yielded a sample average daily revenue and sample standard deviation of \(\$ 70.00\) and \(\$ 4.20\), respectively. Does this information suggest that the true average daily revenue has decreased from its value before the price increase? Test the appropriate hypotheses using \(\alpha=.05\).

The article "Fewer Parolees Land Back Behind Bars" (Associated Press, April 11,2006 ) includes the following statement: "Just over 38 percent of all felons who were released from prison in 2003 landed back behind bars by the end of the following year, the lowest rate since 1979." Explain why it would not be necessary to carry out a hypothesis test to determine if the proportion of felons released in 2003 was less than \(.40\).

A credit bureau analysis of undergraduate students credit records found that the average number of credit cards in an undergraduate's wallet was \(4.09\) ("Undergraduate Students and Credit Cards in 2004," Nellie Mae, May 2005). It was also reported that in a random sample of 132 undergraduates, the sample mean number of credit cards carried was 2.6. The sample standard deviation was not reported, but for purposes of this exercise, suppose that it was \(1.2\). Is there convincing evidence that the mean number of credit cards that undergraduates report carrying is less than the credit bureau's figure of \(4.09\) ?

Many older homes have electrical systems that use fuses rather than circuit breakers. A manufacturer of 40 -amp fuses wants to make sure that the mean amperage at which its fuses burn out is in fact 40 . If the mean amperage is lower than 40 , customers will complain because the fuses require replacement too often. If the mean amperage is higher than 40 , the manufacturer might be liable for damage to an electrical system as a result of fuse malfunction. To verify the mean amperage of the fuses, a sample of fuses is selected and tested. If a hypothesis test is performed using the resulting data, what null and alternative hypotheses would be of interest to the manufacturer?

In a representative sample of 1000 adult Americans, only 430 could name at least one justice who is currently serving on the U.S. Supreme Court (Ipsos, January 10,2006 ). Using a significance level of \(.01\), carry out ? hypothesis test to determine if there is convincing evidence to support the claim that fewer than half of adult Americans can name at least one justice currently serving on the Supreme Court.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free