Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Paint used to paint lines on roads must reflect enough light to be clearly visible at night. Let \(\mu\) denote the true average reflectometer reading for a new type of paint under consideration. A test of \(H_{0}: \mu=20\) versus \(H_{a}: \mu>20\) based on a sample of 15 observations gave \(t=3.2\). What conclusion is appropriate at each of the following significance levels? a. \(\alpha=.05\) c. \(\alpha=.001\) b. \(\alpha=.01\)

Short Answer

Expert verified
The actual conclusion depends on the critical t-values for each significance level. Generally, the value \(t=3.2\) would be compared to the critical t-value for each significance level. If \(t=3.2\) is greater than the critical t-value, then the null hypothesis \(H_{0}: \mu=20\) would be rejected, leading to the conclusion that the true average reflectometer reading for the new type of paint is more than 20.

Step by step solution

01

Determine the critical t-values

Consult a t-table to find the critical t-values corresponding to the calculated degrees of freedom, which is n-1 = 15-1 = 14, for each of the given significance levels. The critical t-values are critical because they form a threshold: if the calculated t-value is greater than the critical t-value, then the null hypothesis should be rejected.
02

Compare the calculated t-value to the critical t-values

The calculated t-value in this case is 3.2. Now this needs to be compared with each of the critical t-values determined in Step 1.
03

Draw conclusions for each significance level

For each significance level, if the calculated t-value is greater than the critical t-value, then the null hypothesis should be rejected, suggesting that the true average reflectometer reading for the new type of paint is more than 20. If not, the null hypothesis cannot be rejected.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a representative sample of 1000 adult Americans, only 430 could name at least one justice who is currently serving on the U.S. Supreme Court (Ipsos, January 10,2006 ). Using a significance level of \(.01\), carry out ? hypothesis test to determine if there is convincing evidence to support the claim that fewer than half of adult Americans can name at least one justice currently serving on the Supreme Court.

Speed, size, and strength are thought to be important factors in football performance. The article "Physical and Performance Characteristics of NCAA Division I Football Players" (Research Quarterly for Exercise and Sport \([1990]: 395-401\) ) reported on physical characteristics of Division I starting football players in the 1988 football season. Information for teams ranked in the top 20 was easily obtained, and it was reported that the mean weight of starters on top- 20 teams was \(105 \mathrm{~kg}\). A random sample of 33 starting players (various positions were represented) from Division I teams that were not ranked in the top 20 resulted in a sample mean weight of \(103.3 \mathrm{~kg}\) and a sample standard deviation of \(16.3 \mathrm{~kg}\). Is there sufficient evidence to conclude that the mean weight for nontop- 20 starters is less than 105, the known value for top20 teams?

The desired percentage of silicon dioxide in a certain type of cement is \(5.0 \%\). A random sample of \(n=36\) specimens gave a sample average percentage of \(\bar{x}=5.21\). Let \(\mu\) be the true average percentage of silicon dioxide in this type of cement, and suppose that \(\sigma\) is known to be \(0.38\). Test \(H_{0}: \mu=5\) versus \(H_{a}\) : \(\mu \neq 5\) using a significance level of \(.01\).

An article titled "Teen Boys Forget Whatever It Was" appeared in the Australian newspaper The Mercury (April 21, 1997). It described a study of academic performance and attention span and reported that the mean time to distraction for teenage boys working on an independent task was 4 min. Although the sample size was not given in the article, suppose that this mean was based on a random sample of 50 teenage Australian boys and that the sample standard deviation was \(1.4\) min. Is there convincing evidence that the average attention span for teenage boys is less than 5 min? Test the relevant hypotheses using \(\alpha=.01\).

Duck hunting in populated areas faces opposition on the basis of safety and environmental issues. The San Luis Obispo Telegram-Tribune (June 18,1991 ) reported the results of a survey to assess public opinion regarding duck hunting on Morro Bay (located along the central coast of California). A random sample of 750 local residents included 560 who strongly opposed hunting on the bay. Does this sample provide sufficient evidence to conclude that the majority of local residents oppose hunting on Morro Bay? Test the relevant hypotheses using \(\alpha=.01\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free