Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "Poll Finds Most Oppose Return to Draft, Wouldn't Encourage Children to Enlist" (Associated Press, December 18,2005 ) reports that in a random sample of 1000 American adults, 700 indicated that they oppose the reinstatement of a military draft. Is there convincing evidence that the proportion of American adults who oppose reinstatement of the draft is greater than twothirds? Use a significance level of \(.05\).

Short Answer

Expert verified
The conclusion will be based on the comparison between the calculated z-score and the critical value. If the z-score is greater than the critical value, we can say there is convincing evidence that the proportion of American adults who oppose the draft reinstatement is greater than two thirds with a significance level of 0.05. Otherwise, we cannot say this.

Step by step solution

01

State the hypotheses

The null hypothesis (H0) indicates that the proportion (p) is equal to two thirds, i.e., H0: p = 2/3. The alternative hypothesis (Ha) is that the proportion is greater than two thirds, i.e., Ha: p > 2/3.
02

Calculate test statistic

We calculate the one-sample z-score using the following formula: \(z = (\hat{p} - p_0) / sqrt[(p_0(1 - p_0))/n]\) where \(\hat{p}\) is the sample proportion, \(p_0\) is the assumed population proportion under the null hypothesis, and \(n\) is the sample size. Here, \(\hat{p} = 700/1000 = 0.7\), \(p_0 = 2/3=0.6667\), and \(n = 1000\). Substituting these values into the formula gives a z-score.
03

Calculate the critical value

We now calculate the critical value for a one-tailed test with a significance level of 0.05, we find that the critical value is 1.645.
04

Making a decision

Compare the calculated z-score with the critical value. If the z-score is greater than the critical value, we reject H0. Otherwise, we fail to reject H0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A random sample of \(n=44\) individuals with a B.S. degree in accounting who started with a Big Eight accounting firm and subsequently changed jobs resulted in a sample mean time to change of \(35.02\) months and a sample standard deviation of \(18.94\) months ("The Debate over Post-Baccalaureate Education: One University's Experience," Issues in Accounting Education [1992]: 18-36). Can it be concluded that the true average time to change exceeds 2 years? Test the appropriate hypotheses using a significance level of \(.01\).

A manufacturer of hand-held calculators receives large shipments of printed circuits from a supplier. It is too costly and time-consuming to inspect all incoming circuits, so when each shipment arrives, a sample is selected for inspection. Information from the sample is then used to test \(H_{0}=\pi=.05\) versus \(H_{a}: \pi>.05\), where \(\pi\) is the true proportion of defective circuits in the shipment. If the null hypothesis is not rejected, the shipment is accepted, and the circuits are used in the production of calculators. If the null hypothesis is rejected, the entire shipment is returned to the supplier because of inferior quality. (A shipment is defined to be of inferior quality if it contains more than \(5 \%\) defective circuits.) a. In this context, define Type I and Type II errors. b. From the calculator manufacturer's point of view, which type of error is considered more serious? c. From the printed circuit supplier's point of view, which type of error is considered more serious?

Speed, size, and strength are thought to be important factors in football performance. The article "Physical and Performance Characteristics of NCAA Division I Football Players" (Research Quarterly for Exercise and Sport \([1990]: 395-401\) ) reported on physical characteristics of Division I starting football players in the 1988 football season. Information for teams ranked in the top 20 was easily obtained, and it was reported that the mean weight of starters on top- 20 teams was \(105 \mathrm{~kg}\). A random sample of 33 starting players (various positions were represented) from Division I teams that were not ranked in the top 20 resulted in a sample mean weight of \(103.3 \mathrm{~kg}\) and a sample standard deviation of \(16.3 \mathrm{~kg}\). Is there sufficient evidence to conclude that the mean weight for nontop- 20 starters is less than 105, the known value for top20 teams?

Researchers have postulated that because of differences in diet, Japanese children have a lower mean blood cholesterol level than U.S. children do. Suppose that the mean level for U.S. children is known to be 170 . Let \(\mu\) represent the true mean blood cholesterol level for Japanese children. What hypotheses should the researchers test?

Let \(\mu\) denote the true average lifetime for a certain type of pen under controlled laboratory conditions. A test of \(H_{0}: \mu=10\) versus \(H_{a}: \mu<10\) will be based on a sample of size 36. Suppose that \(\sigma\) is known to be \(0.6\), from which \(\sigma_{x}=0.1\). The appropriate test statistic is then $$ z=\frac{\bar{x}-10}{0.1} $$ a. What is \(\alpha\) for the test procedure that rejects \(H_{0}\) if \(z \leq\) \(-1.28 ?\) b. If the test procedure of Part (a) is used, calculate \(\beta\) when \(\mu=9.8\), and interpret this error probability. c. Without doing any calculation, explain how \(\beta\) when \(\mu=9.5\) compares to \(\beta\) when \(\mu=9.8\). Then check your assertion by computing \(\beta\) when \(\mu=9.5\). d. What is the power of the test when \(\mu=9.8 ?\) when \(\mu=9.5 ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free