Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that you are an inspector for the Fish and Game Department and that you are given the task of determining whether to prohibit fishing along part of the Oregon coast. You will close an area to fishing if it is determined that fish in that region have an unacceptably high mercury content. a. Assuming that a mercury concentration of \(5 \mathrm{ppm}\) is considered the maximum safe concentration, which of the following pairs of hypotheses would you test: $$ H_{0}: \mu=5 \text { versus } H_{a}: \mu>5 $$ or $$ H_{0}: \mu=5 \text { versus } H_{a}: \mu<5 $$ Give the reasons for your choice. b. Would you prefer a significance level of \(.1\) or \(.01\) for your test? Explain.

Short Answer

Expert verified
For the hypotheses testing, the following pair should be selected: \(H_{0}: \mu = 5\) versus \(H_{a}: \mu > 5\). This is because our concern is the mercury level being higher than the safe level, not lower. For the significance level, a lower value of 0.01 is preferable. This reduces the risk of incorrectly deciding that the mercury level is not exceeding the safe level, thus minimizing potential health risks.

Step by step solution

01

Choice of Hypotheses

The task here is to make a decision about prohibiting fishing. If it is found that the mean mercury concentration in the fish is greater than 5ppm (considered to be the maximum safe concentration), the area will be closed. Therefore, testing will involve checking if the mean mercury concentration exceeds 5ppm or not. Thus:\n\nHypothesis pair: \(H_{0}: \mu = 5ppm) \(H_{a}: \mu > 5ppm.\)
02

Choice of Significance Level

The significance level determines the risk of rejecting the null hypothesis when it's true (Type I error). A significance level of 0.1 means a 10% risk of concluding that a difference exists when there does not (false positive), while a level of 0.01 means only a 1% risk of reaching the same conclusion. Given the potential dangers of consuming fish with high mercury levels, a lower risk of making this error seems beneficial. Therefore, a significance level of 0.01 might be more suitable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Many people have misconceptions about how profitable small, consistent investments can be. In a survey of 1010 randomly selected U.S. adults (Associated Press, October 29,1999 ), only 374 responded that they thought that an investment of \(\$ 25\) per week over 40 years with a \(7 \%\) annual return would result in a sum of over \(\$ 100,000\) (the correct amount is \(\$ 286,640\) ). Is there sufficient evidence to conclude that less than \(40 \%\) of U.S. adults are aware that such an investment would result in a sum of over \(\$ 100,000\) ? Test the relevant hypotheses using \(\alpha=.05\).

According to the article "Workaholism in Organizations: Gender Differences" (Sex Roles [1999]: \(333-346\) ), the following data were reported on 1996 income for random samples of male and female MBA graduates from a certain Canadian business school: \begin{tabular}{lccc} & \(\boldsymbol{N}\) & \(\overline{\boldsymbol{x}}\) & \(\boldsymbol{s}\) \\ \hline Males & 258 & \(\$ 133,442\) & \(\$ 131,090\) \\ Females & 233 & \(\$ 105,156\) & \(\$ 98,525\) \\ \hline \end{tabular} Note: These salary figures are in Canadian dollars. a. Test the hypothesis that the mean salary of male MBA graduates from this school was in excess of \(\$ 100,000\) in \(1996 .\) b. Is there convincing evidence that the mean salary for all female MBA graduates is above \(\$ 100,000 ?\) Test using \(\alpha=.10\) c. If a significance level of \(.05\) or \(.01\) were used instead of \(.10\) in the test of Part (b), would you still reach the same conclusion? Explain.

In an AP-AOL sports poll (Associated Press, December 18,2005 ), 272 of 394 randomly selected baseball fans stated that they thought the designated hitter rule should either be expanded to both baseball leagues or eliminated. Based on the given information, is there sufficient evidence to conclude that a majority of baseball fans feel this way?

Newly purchased automobile tires of a certain type are supposed to be filled to a pressure of 30 psi. Let \(\mu\) denote the true average pressure. Find the \(P\) -value associated with each of the following given \(z\) statistic values for testing \(H_{0}: \mu=30\) versus \(H_{a}: \mu \neq 30\) when \(\sigma\) is known: a. \(2.10\) d. \(1.44\) b. \(-1.75\) e. \(-5.00\) c. \(0.58\)

A random sample of \(n=44\) individuals with a B.S. degree in accounting who started with a Big Eight accounting firm and subsequently changed jobs resulted in a sample mean time to change of \(35.02\) months and a sample standard deviation of \(18.94\) months ("The Debate over Post-Baccalaureate Education: One University's Experience," Issues in Accounting Education [1992]: 18-36). Can it be concluded that the true average time to change exceeds 2 years? Test the appropriate hypotheses using a significance level of \(.01\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free