Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Ann Landers, in her advice column of October 24 , 1994 (San Luis Obispo Telegram-Tribune), described the reliability of DNA paternity testing as follows: "To get a completely accurate result, you would have to be tested, and so would (the man) and your mother. The test is 100 percent accurate if the man is not the father and \(99.9\) percent accurate if he is." a. Consider using the results of DNA paternity testing to decide between the following two hypotheses: \(H_{0}\) " a particular man is the father \(H_{a}:\) a particular man is not the father In the context of this problem, describe Type I and Type II errors. (Although these are not hypotheses about a population characteristic, this exercise illustrates the definitions of Type I and Type II errors.) b. Based on the information given, what are the values of \(\alpha\), the probability of Type I error, and \(\beta\), the probability of Type II error? c. Ann Landers also stated, "If the mother is not tested, there is a \(0.8\) percent chance of a false positive." For the hypotheses given in Part (a), what are the values of \(\alpha\) and \(\beta\) if the decision is based on DNA testing in which the mother is not tested?

Short Answer

Expert verified
The probability of a Type I error (\(\alpha\)) is 0 and the probability of a Type II error (\(\beta\)) is 0.001 based on the given information. If the mother is not tested, the probability of a Type I error changes to 0.008 while the probability of a Type II error cannot be determined.

Step by step solution

01

Define Type I and Type II errors

In the context of this problem, a Type I error would occur if we conclude that a particular man is not the father (reject \(H_{0}\)) when he actually is (meaning \(H_{0}\) is true). A Type II error would occur if we conclude that a particular man is the father (fail to reject \(H_{0}\)) when he actually is not (meaning \(H_{0}\) is false).
02

Calculate the probability of Type I and Type II error

Based on the information given, the test is 100 percent accurate if the man is not the father, meaning the probability of Type I error \(\alpha\) is \(0.0\) (zero percent). The test is 99.9 percent accurate if the man is the father, thus the probability of Type II error \(\beta\) is \(1 - 0.999 = 0.001\) (0.1 percent).
03

Calculate the probability of Type I and Type II error without the mother's test

According to Ann Landers, if the mother is not tested, there is a 0.8 percent chance of a false positive. This means the probability of Type I error \(\alpha\) is \(0.008\) (0.8 percent). Since no information is given about the probability of deciding a man is the father when he is not, in this case, the probability of Type II error cannot be determined.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Many older homes have electrical systems that use fuses rather than circuit breakers. A manufacturer of 40 -amp fuses wants to make sure that the mean amperage at which its fuses burn out is in fact 40 . If the mean amperage is lower than 40 , customers will complain because the fuses require replacement too often. If the mean amperage is higher than 40 , the manufacturer might be liable for damage to an electrical system as a result of fuse malfunction. To verify the mean amperage of the fuses, a sample of fuses is selected and tested. If a hypothesis test is performed using the resulting data, what null and alternative hypotheses would be of interest to the manufacturer?

In a representative sample of 1000 adult Americans, only 430 could name at least one justice who is currently serving on the U.S. Supreme Court (Ipsos, January 10,2006 ). Using a significance level of \(.01\), carry out ? hypothesis test to determine if there is convincing evidence to support the claim that fewer than half of adult Americans can name at least one justice currently serving on the Supreme Court.

Do state laws that allow private citizens to carry concealed weapons result in a reduced crime rate? The author of a study carried out by the Brookings Institution is reported as saying, "The strongest thing I could say is that \(\bar{I}\) don't see any strong evidence that they are reducing crime" (San Luis Obispo Tribune, January 23,2003 ).

Researchers have postulated that because of differences in diet, Japanese children have a lower mean blood cholesterol level than U.S. children do. Suppose that the mean level for U.S. children is known to be 170 . Let \(\mu\) represent the true mean blood cholesterol level for Japanese children. What hypotheses should the researchers test?

Many people have misconceptions about how profitable small, consistent investments can be. In a survey of 1010 randomly selected U.S. adults (Associated Press, October 29,1999 ), only 374 responded that they thought that an investment of \(\$ 25\) per week over 40 years with a \(7 \%\) annual return would result in a sum of over \(\$ 100,000\) (the correct amount is \(\$ 286,640\) ). Is there sufficient evidence to conclude that less than \(40 \%\) of U.S. adults are aware that such an investment would result in a sum of over \(\$ 100,000\) ? Test the relevant hypotheses using \(\alpha=.05\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free