Suppose that \(\left(A_{i}, \rho_{i}\right), 1 \leq i \leq k,\) are metric
spaces. Let
$$
A=A_{1} \times A_{2} \times \cdots \times
A_{k}=\left\\{\mathbf{X}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mid x_{i}
\in A_{i}, 1 \leq i \leq k\right\\}
$$
If \(\mathbf{X}\) and \(\mathbf{Y}\) are in \(A,\) let
$$
\rho(\mathbf{X}, \mathbf{Y})=\sum_{i=1}^{k} \rho\left(x_{i}, y_{i}\right)
$$
(a) Show that \(\rho\) is a metric on \(A\).
(b) Let \(\left\\{\mathbf{X}_{r}\right\\}_{r=1}^{\infty}=\left\\{\left(x_{1 r},
x_{2 r}, \ldots, x_{k r}\right)\right\\}_{r=1}^{\infty}\) be a sequence in \(A
.\) Show that
$$
\lim _{r \rightarrow \infty}
\mathbf{X}_{r}=\widehat{\mathbf{X}}=\left(\widehat{x}_{1}, \widehat{x}_{2},
\ldots, \widehat{x}_{k}\right)
$$
if and only if
$$
\lim _{r \rightarrow \infty} x_{i r}=\widehat{x}_{i}, \quad 1 \leq i \leq k
$$
(c) Show that \(\left\\{\mathbf{X}_{r}\right\\}_{r=1}^{\infty}\) is a Cauchy
sequence in \((A, \rho)\) if and only if \(\left\\{x_{i}
r\right\\}_{r=1}^{\infty}\) is a Cauchy sequence in \(\left(A_{i},
\rho_{i}\right), 1 \leq i \leq k\).
(d) Show that \((A, \rho)\) is complete if and only if \(\left(A_{i},
\rho_{i}\right)\) is complete, \(1 \leq i \leq k\).