Let \(R=[0,1] \times[0,1] \times[0,1], \widetilde{R}=[0,1] \times[0,1],\) and
\(f(x, y, z)=\left\\{\begin{array}{ll}2 x y+2 x z & \text { if } y \text { and
} z \text { are rational, } \\ y+2 x z & \text { if } y \text { is irrational
and } z \text { is rational, } \\ 2 x y+z & \text { if } y \text { is
rational and } z \text { is irrational, } \\ y+z & \text { if } y \text { and
} z \text { are irrational. }\end{array}\right.\) Calculate
(a) \(\int_{R} f(x, y, z) d(x, y, z)\) and \(\int_{R} f(x, y, z) d(x, y, z)\)
(b) \(\int_{\widetilde{R}} f(x, y, z) d(x, y)\) and
\(\overline{\int_{\widetilde{R}}} f(x, y, z) d(x, y)\)
(c) \(\int_{0}^{1} d y \int_{0}^{1} f(x, y, z) d x\) and \(\int_{0}^{1} d z
\int_{0}^{1} d y \int_{0}^{1} f(x, y, z) d x\).