Chapter 6: Problem 7
Let $$\mathbf{F}(x, y)=\left[\begin{array}{c} x^{2}-y^{2} \\ 2 x y \end{array}\right]$$ (Example 6.3 .4 ) and $$S=\\{(x, y) \mid a x+b y>0\\} \quad\left(a^{2}+b^{2} \neq 0\right)$$ Find \(\mathbf{F}(S)\) and \(\mathbf{F}_{S}^{-1} .\) If $$S_{1}=\\{(x, y) \mid a x+b y<0\\}$$ show that \(\mathbf{F}\left(S_{1}\right)=\mathbf{F}(S)\) and \(\mathbf{F}_{S_{1}}^{-1}=-\mathbf{F}_{S}^{-1}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.