Chapter 6: Problem 20
Find an affine transformation \(\mathbf{A}\) that so well approximates the branch \(\mathbf{G}\) of \(\mathbf{F}^{-1}\) defined near \(\mathbf{U}_{0}=\mathbf{F}\left(\mathbf{X}_{0}\right)\) that $$\lim _{\mathbf{U} \rightarrow \mathbf{U}_{0}} \frac{\mathbf{G}(\mathbf{U})-\mathbf{A}(\mathbf{U})}{\left|\mathbf{U}-\mathbf{U}_{0}\right|}=\mathbf{0}$$ (a) \(\left[\begin{array}{l}u \\ v\end{array}\right]=\mathbf{F}(x, y)=\left[\begin{array}{l}x^{4} y^{5}-4 x \\ x^{3} y^{2}-3 y\end{array}\right], \quad \mathbf{X}_{0}=(1,-1)\) (b) \(\left[\begin{array}{l}u \\ v\end{array}\right]=\mathbf{F}(x, y)=\left[\begin{array}{c}x^{2} y+x y \\ 2 x y+x y^{2}\end{array}\right], \quad \mathbf{X}_{0}=(1,1)\) (c) \(\left[\begin{array}{l}u \\ v \\ w\end{array}\right]=\mathbf{F}(x, y, z)=\left[\begin{array}{c}2 x^{2} y+x^{3}+z \\ x^{3}+y z \\\ x+y+z\end{array}\right], \quad \mathbf{X}=(0,1,1)\) (d) \(\left[\begin{array}{l}u \\ v \\ w\end{array}\right]=\mathbf{F}(x, y, z)=\left[\begin{array}{c}x \cos y \cos z \\ x \sin y \cos z \\ x \sin z\end{array}\right], \quad \mathbf{X}_{0}=(1, \pi / 2, \pi)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.