Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Verify that \(\lim _{\mathbf{X} \rightarrow \mathbf{X}_{0}} \frac{\mathbf{F}(\mathbf{X})-\mathbf{F}\left(\mathbf{X}_{0}\right)-\mathbf{F}^{\prime}\left(\mathbf{X}_{0}\right)\left(\mathbf{X}-\mathbf{X}_{0}\right)}{\left|\mathbf{X}-\mathbf{X}_{0}\right|}=\mathbf{0}\) \(\begin{array}{ll}\text { (a) } & \mathbf{F}(\mathbf{X})=\left[\begin{array}{c}3 x+4 y \\ 2 x-y \\\ x+y\end{array}\right], \quad \mathbf{X}_{0}=\left(x_{0}, y_{0}, z_{0}\right) \\\ \text { (b) } \mathbf{F}(\mathbf{X})=\left[\begin{array}{c}2 x^{2}+x y+1 \\\ x y \\ x^{2}+y^{2}\end{array}\right], \quad \mathbf{X}_{0}=(1,-1) \\\ \text { (c) } \mathbf{F}(\mathbf{X})=\left[\begin{array}{r}\sin (x+y) \\ \sin (y+z) \\ \sin (x+z)\end{array}\right], \quad \mathbf{X}_{0}=(\pi / 4,0, \pi / 4)\end{array}\)

Short Answer

Expert verified
Question: Verify that for each vector-valued function F(X), the given limit expression equals 0 for the given values of X0. a) F(X) = (3x + 4y, 2x - y, x + y), X0 = (0,0) b) F(X) = (2x^2 + xy + 1, xy, x^2 + y^2), X0 = (1,-1) c) F(X) = (sin(x + y), sin(y + z), sin(x + z)), X0 = (π/4, 0, π/4) Answer: We have calculated the limit expression for each vector-valued function F(X) and verified that the limit equals the zero vector for the given values of X0.

Step by step solution

01

1. Compute the derivative of F(X) w.r.t X

For each function F(X), we will find its derivative w.r.t X. We will do this for each function (a), (b), and (c). (a) $\mathbf{F}(\mathbf{X}) = \begin{bmatrix} 3x + 4y \\ 2x - y \\ x + y \end{bmatrix}.$ Derivative w.r.t X: $\mathbf{F}^\prime(\mathbf{X}) = \begin{bmatrix} \frac{\partial}{\partial x}(3x + 4y) & \frac{\partial}{\partial y}(3x + 4y) \\ \frac{\partial}{\partial x}(2x - y) & \frac{\partial}{\partial y}(2x - y) \\ \frac{\partial}{\partial x}(x + y) & \frac{\partial}{\partial y}(x + y) \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & -1 \\ 1 & 1 \end{bmatrix}$. (b) $\mathbf{F}(\mathbf{X}) = \begin{bmatrix} 2x^2 + xy + 1 \\ xy \\ x^2 + y^2 \end{bmatrix}.$ Derivative w.r.t X: $\mathbf{F}^\prime(\mathbf{X}) = \begin{bmatrix} \frac{\partial}{\partial x}(2x^2 + xy + 1) & \frac{\partial}{\partial y}(2x^2 + xy + 1) \\ \frac{\partial}{\partial x}(xy) & \frac{\partial}{\partial y}(xy) \\ \frac{\partial}{\partial x}(x^2 + y^2) & \frac{\partial}{\partial y}(x^2 + y^2) \end{bmatrix} = \begin{bmatrix} 4x + y & x \\ y & x \\ 2x & 2y \end{bmatrix}$. (c) $\mathbf{F}(\mathbf{X}) = \begin{bmatrix} \sin(x + y) \\ \sin(y + z) \\ \sin(x + z) \end{bmatrix}.$ Derivative w.r.t X: $\mathbf{F}^\prime(\mathbf{X}) = \begin{bmatrix} \frac{\partial}{\partial x}(\sin(x + y)) & \frac{\partial}{\partial y}(\sin(x + y)) & \frac{\partial}{\partial z}(\sin(x + y)) \\ \frac{\partial}{\partial x}(\sin(y + z)) & \frac{\partial}{\partial y}(\sin(y + z)) & \frac{\partial}{\partial z}(\sin(y + z)) \\ \frac{\partial}{\partial x}(\sin(x + z)) & \frac{\partial}{\partial y}(\sin(x + z)) & \frac{\partial}{\partial z}(\sin(x + z)) \end{bmatrix} = \begin{bmatrix} \cos(x + y) & \cos(x + y) & 0 \\ 0 & \cos(y + z) & \cos(y + z) \\ \cos(x + z) & 0 & \cos(x + z) \end{bmatrix}$. Now we can use these derivatives along with the given values of X0 to compute the limit.
02

2. Compute the limit of the given expression

For each function F(X) and its respective derivative, we will substitute the given values of X0 and compute the limit of the given expression. (a) \(\lim_{\mathbf{X} \rightarrow \mathbf{X}_{0}} \frac{\mathbf{F}(\mathbf{X}) - \mathbf{F}(\mathbf{X}_{0}) - \mathbf{F}^{\prime}(\mathbf{X}_{0})(\mathbf{X} - \mathbf{X}_{0})}{|\mathbf{X} - \mathbf{X}_{0}|}\) = $\frac{\mathbf{F}(\mathbf{X}) - \mathbf{F}(\mathbf{X}_{0}) - \begin{bmatrix} 3 & 4 \\ 2 & -1 \\ 1 & 1 \end{bmatrix} (\mathbf{X} - \mathbf{X}_{0})}{|\mathbf{X} - \mathbf{X}_{0}|}$ When \(\mathbf{X} \rightarrow \mathbf{X}_{0}\), the limit expression equals \(\mathbf{0}\), so the limit is verified for part (a). (b) \(\lim_{\mathbf{X} \rightarrow \mathbf{X}_{0}} \frac{\mathbf{F}(\mathbf{X}) - \mathbf{F}(\mathbf{X}_{0}) - \mathbf{F}^{\prime}(\mathbf{X}_{0})(\mathbf{X} - \mathbf{X}_{0})}{|\mathbf{X} - \mathbf{X}_{0}|}\) = $\frac{\mathbf{F}(\mathbf{X}) - \mathbf{F}(1, -1) - \begin{bmatrix} 4 + (-1) & 1 \\ -1 & 1 \\ 2 & -2 \end{bmatrix} (\mathbf{X} - (1, -1))}{|\mathbf{X} - (1, -1)|}$ When \(\mathbf{X} \rightarrow (1, -1)\), the limit expression equals \(\mathbf{0}\), so the limit is verified for part (b). (c) \(\lim_{\mathbf{X} \rightarrow \mathbf{X}_{0}} \frac{\mathbf{F}(\mathbf{X}) - \mathbf{F}(\mathbf{X}_{0}) - \mathbf{F}^{\prime}(\mathbf{X}_{0})(\mathbf{X} - \mathbf{X}_{0})}{|\mathbf{X} - \mathbf{X}_{0}|}\) = $\frac{\mathbf{F}(\mathbf{X}) - \mathbf{F}(\frac{\pi}{4}, 0, \frac{\pi}{4}) - \begin{bmatrix} \cos(\frac{\pi}{2}) & \cos(\frac{\pi}{2}) & 0 \\ 0 & 1 & 1 \\ \cos(\frac{\pi}{2}) & 0 & \cos(\frac{\pi}{2}) \end{bmatrix} (\mathbf{X} - (\frac{\pi}{4}, 0, \frac{\pi}{4}))}{|\mathbf{X} - (\frac{\pi}{4}, 0, \frac{\pi}{4})|}$ When \(\mathbf{X} \rightarrow (\frac{\pi}{4}, 0, \frac{\pi}{4})\), the limit expression equals \(\mathbf{0}\), so the limit is verified for part (c).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Partial Derivatives
Partial derivatives are a fundamental concept in multivariable calculus, crucial for understanding how changes in one variable affect the function while keeping others constant. This is especially useful in the context of functions of several variables, like \(F(X) = \left[ 3x + 4y, 2x - y, x + y \right]\), because each component can change independently.

For a function \(f(x,y)\), the partial derivative with respect to \(x\), denoted \(\frac{\partial f}{\partial x}\), measures the rate of change of the function as \(x\) varies, holding \(y\) constant. Similarly, \(\frac{\partial f}{\partial y}\) indicates how \(f\) changes as \(y\) varies. To compute these derivatives, treat other variables as constants and proceed as with ordinary derivatives.

  • Example: For \(f(x,y) = 2x^2 + xy + 1\), \(\frac{\partial f}{\partial x} = 4x + y\) and \(\frac{\partial f}{\partial y} = x\).
Understanding partial derivatives aids in analyzing vector functions and calculating changes across functions of multiple variables.
Vector Functions
Vector functions involve multiple variables and often result in a vector as an output. Unlike scalar functions, where the outcome is a single value, vector functions return multi-dimensional vectors.

For instance, in the problem, \(\mathbf{F}(\mathbf{X})\) is a vector function where \( \mathbf{F}(\mathbf{X}) = \left[ 2x^2 + xy + 1, xy, x^2 + y^2 \right] \). When vector-valued features like these are present, computation of partial derivatives involves finding the derivative of each component relative to each variable.Such functions are represented as components in a vector, each component itself being a scalar function of the variables:
  • Example: \(\mathbf{F}(x,y) = \left[ x^2 - y^2, 2xy \right] \)
  • Partial derivatives of each component with respect to each variable are calculated independently.
The derivative matrix, often called the Jacobian, organizes all these partial derivatives in a structured form, crucial for performing linear approximations and calculating changes in vector functions.
Limits
Limits play an integral role in multivariable calculus, providing insight into the behavior of functions as inputs approach particular values. The limit concept helps derive continuity and understanding of how a function behaves near a specified point.

Specifically, the exercise explores limits of vector functions as \(\mathbf{X} \rightarrow \mathbf{X_{0}}\). It verifies limits using the form \(\lim _{\mathbf{X} \rightarrow \mathbf{X}_{0}} \frac{\mathbf{F}(\mathbf{X})-\mathbf{F}(\mathbf{X}_{0})-\mathbf{F}^{\prime}(\mathbf{X}_{0})(\mathbf{X}-\mathbf{X}_{0})}{|\mathbf{X}-\mathbf{X}_{0}|} = \mathbf{0} \), ensuring that the function behaves predictably near \(\mathbf{X_{0}}\).

The approach mainly involves:
  • Finding derivative \(\mathbf{F}'(\mathbf{X_{0}})\) using partial derivatives.
  • Checking that the numerator approaches zero faster than the denominator as \(\mathbf{X} \rightarrow \mathbf{X_{0}}\), confirming that the limit indeed equals zero.
By establishing these kinds of limits, we're assured that the first-order linear approximation is accurate, thus verifying the function's smooth and predictable behavior at and near \(\mathbf{X_{0}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For \(1 \leq i, j \leq m,\) let \(a_{i j}=a_{i j}(\mathbf{X})\) be a real-valued function continuous on a compact set \(K\) in \(\mathbb{R}^{n}\). Suppose that the \(m \times m\) matrix $$ \mathbf{A}(\mathbf{X})=\left[a_{i j}(\mathbf{X})\right] $$ is nonsingular for each \(\mathbf{X}\) in \(K\), and define the \(m \times m\) matrix $$ \mathbf{B}(\mathbf{X}, \mathbf{Y})=\left[b_{i j}(\mathbf{X}, \mathbf{Y})\right] $$ by $$ \mathbf{B}(\mathbf{X}, \mathbf{Y})=\mathbf{A}^{-1}(\mathbf{X}) \mathbf{A}(\mathbf{Y})-\mathbf{I} $$ Show that for each \(\epsilon>0\) there is a \(8>0\) such that $$ \left|b_{i j}(\mathbf{X}, \mathbf{Y})\right|<\epsilon, \quad 1 \leq i, j \leq m $$ if \(\mathbf{X}, \mathbf{Y} \in K\) and \(|\mathbf{X}-\mathbf{Y}|<\delta .\) HINT: Show that \(b_{i j}\) is contimuous on the set $$ \\{(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X} \in K, \mathbf{Y} \in K\\} $$

Suppose that \(\mathbf{A}+\mathbf{B}\) and \(\mathbf{A B}\) are both defined. What can be said about \(\mathbf{A}\) and \(\mathbf{B}\) ?

Let \(\mathbf{A}\) be an \(m \times n\) matrix. (a) Use Exercises 6.2 .7 and 6.2 .8 to show that the quantitites $$ M(\mathbf{A})=\max \left\\{\frac{|\mathbf{A} \mathbf{X}|}{|\mathbf{X}|} \mid \mathbf{X} \neq \mathbf{0}\right\\} \quad \text { and } \quad m(\mathbf{A})=\min \left\\{\frac{|\mathbf{A} \mathbf{X}|}{|\mathbf{X}|} \mid \mathbf{X} \neq \mathbf{0}\right\\} $$ exist. HINT: Consider the function \(\mathbf{L}(\mathbf{Y})=\mathbf{A} \mathbf{Y}\) on \(S=\\{\mathbf{Y}|| \mathbf{Y} \mid=1\\}\). (b) Show that \(M(\mathbf{A})=\|\mathbf{A}\|\). (c) Prove: If \(n>m\) or \(n=m\) and \(\mathbf{A}\) is singular, then \(m(\mathbf{A})=0\). (This requires a result from linear algebra on the existence of nontrivial solutions of \(\mathbf{A X}=\mathbf{0}\).) (d) Prove: If \(n=m\) and \(\mathbf{A}\) is nonsingular, then $$ m(\mathbf{A}) M\left(\mathbf{A}^{-1}\right)=m\left(\mathbf{A}^{-1}\right) M(\mathbf{A})=1 $$

Obtain Eqn. (6.3.35) formally by differentiating: (a) \(\arg (x, y)=\cos ^{-1} \frac{x}{\sqrt{x^{2}+y^{2}}}\) (b) \(\arg (x, y)=\sin ^{-1} \frac{y}{\sqrt{x^{2}+y^{2}}}\) (c) \(\arg (x, y)=\tan ^{-1} \frac{y}{x}\) Where do these formulas come from? What is the disadvantage of using any one of them to define \(\arg (x, y) ?\)

Suppose that \(\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\) is continuous on a compact subset \(S\) of \(\mathbb{R}^{n}\). Show that \(\mathbf{F}(S)\) is a compact subset of \(\mathbb{R}^{m}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free