Chapter 6: Problem 2
Verify that \(\lim _{\mathbf{X} \rightarrow \mathbf{X}_{0}} \frac{\mathbf{F}(\mathbf{X})-\mathbf{F}\left(\mathbf{X}_{0}\right)-\mathbf{F}^{\prime}\left(\mathbf{X}_{0}\right)\left(\mathbf{X}-\mathbf{X}_{0}\right)}{\left|\mathbf{X}-\mathbf{X}_{0}\right|}=\mathbf{0}\) \(\begin{array}{ll}\text { (a) } & \mathbf{F}(\mathbf{X})=\left[\begin{array}{c}3 x+4 y \\ 2 x-y \\\ x+y\end{array}\right], \quad \mathbf{X}_{0}=\left(x_{0}, y_{0}, z_{0}\right) \\\ \text { (b) } \mathbf{F}(\mathbf{X})=\left[\begin{array}{c}2 x^{2}+x y+1 \\\ x y \\ x^{2}+y^{2}\end{array}\right], \quad \mathbf{X}_{0}=(1,-1) \\\ \text { (c) } \mathbf{F}(\mathbf{X})=\left[\begin{array}{r}\sin (x+y) \\ \sin (y+z) \\ \sin (x+z)\end{array}\right], \quad \mathbf{X}_{0}=(\pi / 4,0, \pi / 4)\end{array}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.