Chapter 6: Problem 12
If $$\left[\begin{array}{l} u \\ v \end{array}\right]=\mathbf{F}(x, y)=\left[\begin{array}{l} x^{2}+y^{2} \\ x^{2}-y^{2} \end{array}\right]$$ (Example 6.3 .1 ), find four branches \(\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3},\) and \(\mathbf{G}_{4}\) of \(\mathbf{F}^{-1}\) defined on $$T_{1}=\\{(u, v) \mid u+v>0, u-v>0\\}$$ and verify that \(\mathbf{G}_{i}^{\prime}(u, v)=\left(\mathbf{F}^{\prime}(x(u, v), y(u, v))\right)^{-1}, 1 \leq i \leq 4\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.