Chapter 6: Problem 1
Prove: If \(\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\) is a linear transformation, then $$ \mathbf{L}\left(a_{1} \mathbf{X}_{1}+a_{2} \mathbf{X}_{2}+\cdots+a_{k} \mathbf{X}_{k}\right)=a_{1} \mathbf{L}\left(\mathbf{X}_{1}\right)+a_{2} \mathbf{L}\left(\mathbf{X}_{2}\right)+\cdots+a_{k} \mathbf{L}\left(\mathbf{X}_{k}\right) $$ if \(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{k}\) are in \(\mathbb{R}^{n}\) and \(a_{1}, a_{2}, \ldots . a_{k}\) are real numbers.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.