Chapter 5: Problem 7
Find all second-order partial derivatives of the following functions at (0,0) . (a) \(f(x, y)=\left\\{\begin{array}{ll}\frac{x y\left(x^{2}-y^{2}\right.}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0)\end{array}\right.\) (b) \(f(x, y)=\left\\{\begin{array}{ll}x^{2} \tan ^{-1} \frac{y}{x}-y^{2} \tan ^{-1} \frac{x}{y}, & x \neq 0, \quad y \neq 0 \\ 0, & x=0 \quad \text { or } \quad y=0\end{array}\right.\) \(\left(\right.\) Here \(\left.\left|\tan ^{-1} u\right|<\pi / 2 .\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.