Chapter 5: Problem 6
Find \(h_{y}\) and \(h_{z}\) if $$ h(y, z)=g(x(y, z), y, z, w(y, z)) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 5: Problem 6
Find \(h_{y}\) and \(h_{z}\) if $$ h(y, z)=g(x(y, z), y, z, w(y, z)) $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind all second-order partial derivatives of the following functions at (0,0) . (a) \(f(x, y)=\left\\{\begin{array}{ll}\frac{x y\left(x^{2}-y^{2}\right.}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0)\end{array}\right.\) (b) \(f(x, y)=\left\\{\begin{array}{ll}x^{2} \tan ^{-1} \frac{y}{x}-y^{2} \tan ^{-1} \frac{x}{y}, & x \neq 0, \quad y \neq 0 \\ 0, & x=0 \quad \text { or } \quad y=0\end{array}\right.\) \(\left(\right.\) Here \(\left.\left|\tan ^{-1} u\right|<\pi / 2 .\right)\)
Give an example of a function \(f\) on \(\mathbb{R}^{2}\) such that \(f\) is not continuous at (0,0) , but \(f(0, y)\) is a continuous function of \(y\) on \((-\infty, \infty)\) and \(f(x, 0)\) is a continuous function of \(x\) on \((-\infty, \infty)\).
Determine whether \(\lim _{\mathbf{X} \rightarrow \mathbf{X}_{0}} f(\mathbf{X})=\pm \infty\). (a) \(f(\mathbf{X})=\frac{|\sin (x+2 y+4 z)|}{(x+2 y+4 z)^{2}}, \quad \mathbf{X}_{0}=(2,-1,0)\) (b) \(f(\mathbf{X})=\frac{1}{\sqrt{x-y}}, \quad \mathbf{X}_{0}=(0,0)\) (c) \(f(\mathbf{X})=\frac{\sin 1 / x}{\sqrt{x-y}}, \quad \mathbf{X}_{0}=(0,0)\) (d) \(f(\mathbf{X})=\frac{4 y^{2}-x^{2}}{(x-2 y)^{3}}, \quad \mathbf{X}_{0}=(2,1)\) (e) \(f(\mathbf{X})=\frac{\sin (x+2 y+4 z)}{(x+2 y+4 z)^{2}}, \quad \mathbf{X}_{0}=(2,-1,0)\)
Obtain the result in Example 5.4 .7 by writing $$ F(\mathbf{X})=e^{-a_{1} x_{1}} e^{-a_{2} x_{2}} \ldots e^{-a_{n} x_{n}} $$ formally multiplying the series $$ e^{-a_{i} x_{i}}=\sum_{r_{i}=0}^{\infty}(-1)^{r_{i}} \frac{\left(a_{i} x_{i}\right)^{r_{i}}}{r_{i} !}, \quad 1 \leq i \leq n $$ together, and collecting the resulting products appropriately.
Let \(u\) and \(v\) be functions of two variables with continuous second-order partial derivatives in a region \(S\). Suppose that \(u_{x}=v_{y}\) and \(u_{y}=-v_{x}\) in \(S\). Show that $$u_{x x}+u_{y y}=v_{x x}+v_{y y}=0$$ in \(S\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.