Find \(\partial f\left(\mathbf{X}_{0}\right) / \partial \Phi,\) where \(\Phi\) is
the unit vector in the direction of \(\mathbf{X}_{1}-\mathbf{X}\) ).
(a) \(f(x, y, z)=\sin \pi x y z ; \quad \mathbf{X}_{0}=(1,1,-2), \quad
\mathbf{X}_{1}=(3,2,-1)\)
(b) \(f(x, y, z)=e^{-\left(x^{2}+y^{2}+2 z\right)} ; \quad
\mathbf{X}_{0}=(1,0,-1), \quad \mathbf{X}_{1}=(2,0,-1)\)
(c) \(f(x, y, z)=\log (1+x+y+z) ; \quad \mathbf{X}_{0}=(1,0,1), \quad
\mathbf{X}_{1}=(3,0,-1)\)
(d) \(f(\mathbf{X})=|\mathbf{X}|^{4} ; \quad \mathbf{X}_{0}=\mathbf{0}, \quad
\mathbf{X}_{1}=(1,1, \ldots, 1)\)