Chapter 4: Problem 8
Find the radius of convergence. (a) \(\sum(\log n) x^{n}\) (b) \(\sum 2^{n} n^{p}(x+1)^{n}\) (c) \(\sum(-1)^{n}\left(\begin{array}{c}2 n \\ n\end{array}\right) x^{n}\) (d) \(\sum(-1)^{n} \frac{n^{2}+1}{n 4^{n}}(x-1)^{n}\) (e) \(\sum \frac{n^{n}}{n !}(x+2)^{n}\) (f) \(\sum \frac{\alpha(\alpha+1) \cdots(\alpha+n-1)}{\beta(\beta+1) \cdots(\beta+n-1)} x^{n}\) \((\alpha, \beta \neq\) integer)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.