Chapter 4: Problem 42
Prove: If \(\lim _{i \rightarrow \infty} a_{j}^{(i)}=a_{j}(j \geq 1)\) and \(\left|a_{j}^{(i)}\right| \leq \sigma_{j}(i, j \geq 1),\) where \(\sum_{j=1}^{\infty} \sigma_{j}<\) \(\infty,\) then \(\lim _{i \rightarrow \infty} \sum_{j=1}^{\infty} a_{j}^{(i)}=\sum_{j=1}^{\infty} a_{j}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.