Chapter 4: Problem 35
(a) Show that $$ \lim _{n \rightarrow \infty}\left(1-\frac{\alpha}{1}\right)\left(1-\frac{\alpha}{2}\right) \cdots\left(1-\frac{\alpha}{n}\right)=0, \quad \text { if } \quad \alpha>0 $$ (b) Conclude from (a) that $$ \lim _{n \rightarrow \infty}\left(\begin{array}{l} q \\ n \end{array}\right)=0 \quad \text { if } \quad q>-1 $$ where \(\left(\begin{array}{l}q \\ n\end{array}\right)\) is the generalized binomial coefficient of Example 2.5.3.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.