Chapter 4: Problem 32
(a) Prove: If \(0<2 \epsilon<\theta<\pi-2 \epsilon,\) then $$ \varliminf_{n \rightarrow \infty} \frac{|\sin \theta|+|\sin 2 \theta|+\cdots+|\sin n \theta|}{n} \geq \frac{\sin \epsilon}{2} $$ HINT: Show that \(|\sin n \theta|>\sin \epsilon\) at least "half the time"; more precisely, show that if \(|\sin m \theta| \leq \sin \epsilon\) for some integer \(m\) then \(|\sin (m+1) \theta|>\sin \epsilon\). (b) Show that $$ \sum \frac{\sin n \theta}{n^{p}} $$ converges conditionally if \(0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.