Assume that \(\bar{s}, \underline{s}\) ( or \(s\) ), \(\bar{t},\) and
\(\underline{t}\) are in the extended reals, and show that the given
inequalities or equations hold whenever their right sides are defined (not
indeterminate).
(a) If \(s_{n} \geq 0, t_{n} \geq 0,\) then
(i) \(\varlimsup_{n \rightarrow \infty} s_{n} t_{n} \leq \bar{s} t\) and
(ii) \(\varliminf_{n \rightarrow \infty} s_{n} t_{n} \geq \underline{s t}\).
(b) If \(s_{n} \leq 0, t_{n} \geq 0,\) then
(i) \(\varlimsup_{n \rightarrow \infty} s_{n} t_{n} \leq \bar{s} \underline{t}\)
and
(ii) \(\varliminf_{n \rightarrow \infty} s_{n} t_{n} \geq s \bar{t}\).