Chapter 4: Problem 1
Find the set \(S\) on which \(\left\\{F_{n}\right\\}\) converges pointwise, and find the limit function. (a) \(F_{n}(x)=x^{n}\left(1-x^{2}\right)\) (b) \(F_{n}(x)=n x^{n}\left(1-x^{2}\right)\) (c) \(F_{n}(x)=x^{n}\left(1-x^{n}\right)\) (d) \(F_{n}(x)=\sin \left(1+\frac{1}{n}\right) x\) (e) \(F_{n}(x)=\frac{1+x^{n}}{1+x^{2 n}}\) (f) \(F_{n}(x)=n \sin \frac{x}{n}\) \((g) F_{n}(x)=n^{2}\left(1-\cos \frac{x}{n}\right)\) (h) \(F_{n}(x)=n x e^{-n x^{2}}\) (i) \(F_{n}(x)=\frac{(x+n)^{2}}{x^{2}+n^{2}}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.