Chapter 3: Problem 27
(a) Prove: If \(h\) is continuous on \([0, \infty),\) then the function $$ u(x)=c_{1} e^{-x}+c_{2} e^{x}+\int_{0}^{x} h(t) \sinh (x-t) d t $$ satisfies the differential equation $$ u^{\prime \prime}-u=h(x), \quad x>0 $$ (b) Rewrite \(u\) in the form $$ u(x)=a(x) e^{-x}+b(x) e^{x} $$ and show that $$ u^{\prime}(x)=-a(x) e^{-x}+b(x) e^{x} $$ (c) Show that if \(\lim _{x \rightarrow \infty} a(x)=A\) (finite), then $$ \lim _{x \rightarrow \infty} e^{2 x}[b(x)-B]=0 $$ for some constant \(B\). HINT: Use Exercise 3.4.24. Show also that $$ \lim _{x \rightarrow \infty} e^{x}\left[u(x)-A e^{-x}-B e^{x}\right]=0 $$ (d) Prove: If \(\lim _{x \rightarrow \infty} b(x)=B\) (finite), then $$ \lim _{x \rightarrow \infty} u(x) e^{-x}=\lim _{x \rightarrow \infty} u^{\prime}(x) e^{-x}=B $$ HINT: Use Exercise \(3.4 .23 .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.