Let \(u_{1}\) be positive and satisfy the differential equation
$$
u^{\prime \prime}+p(x) u=0, \quad 0 \leq x<\infty
$$
(a) Prove: If
$$
\int_{0}^{\infty} \frac{d x}{u_{1}^{2}(x)}<\infty
$$
then the function
$$
u_{2}(x)=u_{1}(x) \int_{x}^{\infty} \frac{d t}{u_{1}^{2}(t)}
$$
also satisfies (A), while if
$$
\int_{0}^{\infty} \frac{d x}{u_{1}^{2}(x)}=\infty
$$
then the function
$$
u_{2}(x)=u_{1}(x) \int_{0}^{x} \frac{d t}{u_{1}^{2}(t)}
$$
also satisfies \((\mathrm{A})\).
(b) Prove: If (A) has a solution that is positive on \([0, \infty),\) then (A)
has solutions \(y_{1}\) and \(y_{2}\) that are positive on \((0, \infty)\) and have
the following properties:
$$
\begin{aligned}
y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)=1, & x>0 \\
\left[\frac{y_{1}(x)}{y_{2}(x)}\right]^{\prime} &<0, \quad x>0
\end{aligned}
$$
and
$$
\lim _{x \rightarrow \infty} \frac{y_{1}(x)}{y_{2}(x)}=0
$$