Chapter 3: Problem 11
Find conditions on \(p\) and \(q\) such that the integral converges. (a) \(\int_{-1}^{1} \frac{(\cos \pi x / 2)^{q}}{\left(1-x^{2}\right)^{p}} d x\) (b) \(\int_{-1}^{1}(1-x)^{p}(1+x)^{q} d x\) (c) \(\int_{0}^{\infty} \frac{x^{p} d x}{\left(1+x^{2}\right)^{q}}\) (d) \(\int_{1}^{\infty} \frac{[\log (1+x)]^{p}(\log x)^{q}}{x^{p+q}} d x\) (e) \(\int_{1}^{\infty} \frac{(\log (1+x)-\log x)^{q}}{x^{p}} d x\) (f) \(\int_{0}^{\infty} \frac{(x-\sin x)^{q}}{x^{p}} d x\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.