Chapter 2: Problem 42
The iterated logarithms are defined by \(L_{0}(x)=x\) and $$ L_{n}(x)=\log \left(L_{n-1}(x)\right), \quad x>a_{n}, \quad n \geq 1 $$ where \(a_{1}=0\) and \(a_{n}=e^{a_{n-1}}, n \geq 1 .\) Show that (a) \(L_{n}(x)=L_{n-1}(\log x), \quad x>a_{n}, \quad n \geq 1\) (b) \(L_{n-1}\left(a_{n}+\right)=0\) and \(L_{n}\left(a_{n}+\right)=-\infty\). (c) \(\lim _{x \rightarrow a_{n}+}\left(L_{n-1}(x)\right)^{\alpha} L_{n}(x)=0\) if \(\alpha>0\) and \(n \geq 1 .\) (d) \(\lim _{x \rightarrow \infty}\left(L_{n}(x)\right)^{\alpha} / L_{n-1}(x)=0\) if \(\alpha\) is arbitrary and \(n \geq 1\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.