Chapter 2: Problem 13
Determine whether \(x_{0}=0\) is a local maximum, local minimum, or neither. (a) \(f(x)=x^{2} e^{x^{3}}\) (b) \(f(x)=x^{3} e^{x^{2}}\) (c) \(f(x)=\frac{1+x^{2}}{1+x^{3}}\) (d) \(f(x)=\frac{1+x^{3}}{1+x^{2}}\) (e) \(f(x)=x^{2} \sin ^{3} x+x^{2} \cos x\) (f) \(f(x)=e^{x^{2}} \sin x\) (g) \(f(x)=e^{x} \sin x^{2}\) (h) \(f(x)=e^{x^{2}} \cos x\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.