The forward difference operators with spacing \(h>0\) are defined by
$$
\begin{array}{c}
\Delta^{0} f(x)=f(x), \quad \Delta f(x)=f(x+h)-f(x) . \\
\Delta^{n+1} f(x)=\Delta\left[\Delta^{n} f(x)\right], \quad n \geq 1 .
\end{array}
$$
(a) Prove by induction on \(n:\) If \(k \geq 2, c_{1}, \ldots, c_{k}\) are
constants, and \(n \geq 1,\) then
$$
\Delta^{n}\left[c_{1} f_{1}(x)+\cdots+c_{k} f_{k}(x)\right]=c_{1} \Delta^{n}
f_{1}(x)+\cdots+c_{k} \Delta^{n} f_{k}(x)
$$
(b) Prove by induction: If \(n \geq 1\), then
$$
\Delta^{n} f(x)=\sum_{m=0}^{n}(-1)^{n-m}\left(\begin{array}{c}
n \\
m
\end{array}\right) f(x+m h)
$$