Let \(f_{1}\left(x_{1}\right)=g_{1}\left(x_{1}\right)=x_{1} .\) For \(n \geq 2,\)
let
$$
\begin{aligned}
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=& f_{n-1}\left(x_{1}, x_{2},
\ldots, x_{n-1}\right)+2^{n-2} x_{n}+\\\
&\left|f_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)-2^{n-2} x_{n}\right|
\end{aligned}
$$
and
$$
\begin{aligned}
g_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g_{n-1}\left(x_{1}, x_{2},
\ldots, x_{n-1}\right)+2^{n-2} x_{n}-\\\
&\left|g_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)-2^{n-2} x_{n}\right|
.
\end{aligned}
$$
Find explicit formulas for \(f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) and
\(g_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\).