Chapter 8: Problem 13
Independent random samples were selected from two quantitative populations, with sample sizes, means, and variances given in Exercises 13-14. Construct a 95\% upper confidence bound for \(\mu_{1}-\mu_{2}\). Can you conclude that one mean is larger than the other? If so, which mean is larger? $$\begin{array}{lcc}\hline & \multicolumn{2}{c} {\text { Population }} \\\\\cline { 2 - 3 } & 1 & 2 \\\\\hline \text { Sample Size } & 35 & 49 \\\\\text { Sample Mean } & 9.7 & 7.4 \\\\\text { Sample Variance } & 10.78 & 16.44 \\\\\hline\end{array}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.