Let \(x\) be a binomial random variable with \(n=20\)
and \(p=.1\).
a. Calculate \(P(x \leq 4)\) using the binomial formula.
b. Calculate \(P(x \leq 4)\) using Table 1 in Appendix I.
c. Use the following Excel output to calculate \(P(x \leq 4)\). Compare the
results of parts a, b, and c.
d. Calculate the mean and standard deviation of the random variable \(x\).
e. Use the results of part d to calculate the intervals \(\mu \pm \sigma, \mu
\pm 2 \sigma,\) and \(\mu \pm 3 \sigma .\) Find the probability that an
observation will fall into each of these intervals.
f. Are the results of part e consistent with Tchebysheff's Theorem? With the
Empirical Rule? Why or why not?
Excel output for Exercise 33: Binomial with \(n=20\) and \(p=.1\)
$$
\begin{array}{|c|c|c|c|c|}
\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\
\hline 1 & \mathrm{x} & \mathrm{p}(\mathrm{x}) & \mathrm{x} &
\mathrm{p}(\mathrm{x}) \\
\hline 2 & 0 & 0.1216 & 11 & 7 \mathrm{E}-07 \\
\hline 3 & 1 & 0.2702 & 12 & 5 \mathrm{E}-08 \\
\hline 4 & 2 & 0.2852 & 13 & 4 \mathrm{E}-09 \\
\hline 5 & 3 & 0.1901 & 14 & 2 \mathrm{E}-10 \\
\hline 6 & 4 & 0.0898 & 15 & 9 \mathrm{E}-12 \\
\hline 7 & 5 & 0.0319 & 16 & 3 \mathrm{E}-13 \\
\hline 8 & 6 & 0.0089 & 17 & 8 \mathrm{E}-15 \\
\hline 9 & 7 & 0.0020 & 18 & 2 \mathrm{E}-16 \\
\hline 10 & 8 & 0.0004 & 19 & 2 \mathrm{E}-18 \\
\hline 11 & 9 & 0.0001 & 20 & 1 \mathrm{E}-20 \\
\hline 12 & 10 & 0.0000 & & \\
\hline
\end{array}
$$