Chapter 5: Problem 33
Let \(x\) be a binomial random variable with \(n=20\) and \(p=.1\). a. Calculate \(P(x \leq 4)\) using the binomial formula. b. Calculate \(P(x \leq 4)\) using Table 1 in Appendix I. c. Use the following Excel output to calculate \(P(x \leq 4)\). Compare the results of parts a, b, and c. d. Calculate the mean and standard deviation of the random variable \(x\). e. Use the results of part d to calculate the intervals \(\mu \pm \sigma, \mu \pm 2 \sigma,\) and \(\mu \pm 3 \sigma .\) Find the probability that an observation will fall into each of these intervals. f. Are the results of part e consistent with Tchebysheff's Theorem? With the Empirical Rule? Why or why not? Excel output for Exercise 33: Binomial with \(n=20\) and \(p=.1\) $$ \begin{array}{|c|c|c|c|c|} \hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\ \hline 1 & \mathrm{x} & \mathrm{p}(\mathrm{x}) & \mathrm{x} & \mathrm{p}(\mathrm{x}) \\ \hline 2 & 0 & 0.1216 & 11 & 7 \mathrm{E}-07 \\ \hline 3 & 1 & 0.2702 & 12 & 5 \mathrm{E}-08 \\ \hline 4 & 2 & 0.2852 & 13 & 4 \mathrm{E}-09 \\ \hline 5 & 3 & 0.1901 & 14 & 2 \mathrm{E}-10 \\ \hline 6 & 4 & 0.0898 & 15 & 9 \mathrm{E}-12 \\ \hline 7 & 5 & 0.0319 & 16 & 3 \mathrm{E}-13 \\ \hline 8 & 6 & 0.0089 & 17 & 8 \mathrm{E}-15 \\ \hline 9 & 7 & 0.0020 & 18 & 2 \mathrm{E}-16 \\ \hline 10 & 8 & 0.0004 & 19 & 2 \mathrm{E}-18 \\ \hline 11 & 9 & 0.0001 & 20 & 1 \mathrm{E}-20 \\ \hline 12 & 10 & 0.0000 & & \\ \hline \end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.