Chapter 5: Problem 32
A fire-detection device uses three temperature-sensitive cells acting independently of one another so that any one or more can activate the alarm. Each cell has a probability \(p=.8\) of activating the alarm when the temperature reaches \(57^{\circ} \mathrm{C}\) or higher. Let \(x\) equal the number of cells activating the alarm when the temperature reaches \(57^{\circ} \mathrm{C}\). a. Find the probability distribution of \(x\). b. Find the probability that the alarm will function when the temperature reaches \(57^{\circ} \mathrm{C}\). c. Find the expected value and the variance for the random variable \(x\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.