Chapter 5: Problem 1
List the five identifying characteristics of the binomial experiment.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 5: Problem 1
List the five identifying characteristics of the binomial experiment.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeIdentify the random variables in Exercises \(2-11\) as either discrete or continuous. Number of aircraft near-collisions in a year
A new surgical procedure is said to be successful \(80 \%\) of the time. Suppose the operation is performed five times and the results are assumed to be independent of one another. a. What is the probability that all five operations are successful. b. What is the probability that exactly four are successful. c. What is the probability that less than two are successful. d. If less than two operations were successful, how would you feel about the performance of the surgical team?
Talking or texting on your cell phone can be hazardous to your health! A snapshot in USA Today reports that approximately \(23 \%\) of cell phone owners have walked into someone or something while talking on their phones. A random sample of \(n=8\) cell phone owners were asked if they had ever walked into something or someone while talking on their cell phone. The following printout shows the cumulative and individual probabilities for a binomial random variable with \(n=8\) and \(p=.23 .\) Cumulative Distribution Function Binomial with \(\mathrm{n}=8\) and \(\mathrm{p}=0.23\) $$ \begin{array}{rl} \text { X } & P(X \leq X) \\ \hline 0 & 0.12357 \\ 1 & 0.41887 \\ 2 & 0.72758 \\ 3 & 0.91201 \\ 4 & 0.98087 \\ 5 & 0.99732 \\ 6 & 0.99978 \\ 7 & 0.99999 \\ 8 & 1.00000 \end{array} $$ Probability Density Function Binomial with \(n=8\) and \(p=0.23\) $$ \begin{aligned} &\begin{array}{cc} x & P(X=x) \\ \hline 0 & 0.123574 \end{array}\\\ &\begin{array}{l} 0 & 0.123574 \\ 1 & 0.295293 \\ 2 & 0.308715 \\ 3 & 0.184427 \\ 4 & 0.068861 \\ 5 & 0.016455 \\ 6 & 0.002458 \\ 7 & 0.000210 \\ 8 & 0.000008 \end{array} \end{aligned} $$ a. Use the binomial formula to find the probability that one of the eight have walked into someone or something while talking on their cell phone. b. Confirm the results of part a using the printout. c. What is the probability that at least two of the eight have walked into someone or something while talking on their cell phone.
Let \(x\) be the number of successes observed in a sample of \(n=4\) items selected from a population of \(N=8 .\) Suppose that of the \(N=8\) items, \(M=5\) are considered "successes." Find the probabilities in Exercises \(8-10 .\) The probability of observing at most two successes.
For the random variables described, find and graph the probability distribution for \(x .\) Then calculate the mean, variance, and standard deviation. Of adults 18 years and older, \(47 \%\) admit to texting while driving. ' Three adults are randomly selected and \(x\), the number who admit to texting while driving is recorded.
What do you think about this solution?
We value your feedback to improve our textbook solutions.